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Explore the title... what we will read about?
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Explore the title... what we will read about?

Artificial Intelligence

Artificial intelligence (Al) is the capability of a computer system to mimic human
cognitive functions such as learning and problem-solving. Through Al, a computer

system uses math and logic to simulate the reasoning that people use to learn from new
information and make decisions.
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Explore the title... what we will read about?

Bulk and Single-Cell RNA-Sequencing

Bulk RNA-seq captures the average of expression profiles of thousands of cells, while
single-cell RNA-seq allows the capture of individual measurements.
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Explore the title... what we will read about?

Precision Oncology

Precision oncology is the molecular profiling of tumours to identify targetable alterations

The goal of precision medicine is to deliver the personalised treatment to each
patient.
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Search the date... is it recent?
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Are there any keywords?

Keywords: artificial intelligence; RNA sequencing; cancer heterogeneity
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Are there any keywords?

What's heterogeneity in cancer? Heterogeneity between: Tumor types

Patients sharing the same tumor type

Different clones in the same tumor

A. Inter-tumour heterogeneity

Spatial ITH

Temporal ITH
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Understand the abstract
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Abstract: Artificial intelligence, or the discipline of developing computational algorithms able to
perform tasks that requires human intelligence, offers the opportunity to improve our idea and

delivery of precision medicine. Here, we provide an overview of artificial intelligence approaches for

the analysis of large-scale RNA-sequencing datasets in cancer. We present the major solutions to dis-

entangle inter- and intra-tumor heterogeneity of transcriptome profiles for an effective improvement

of patient management. We outline the contributions of learning algorithms to the needs of cancer

genomics, from identifying rare cancer subtypes to personalizing therapeutic treatments.
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Dive into the introduction

1st paragraph Al progression, importance and limitations in precision medicine

Artificial intelligence (Al) is becoming a fundamental asset for healthcare and life
science research. Despite being in its infancy, research activities employing Al are chang-
ing our understanding and vision of science. The European Commission has recently
estimated that 13% of global venture capital investments (i.e., ~5 billion of Euros) are
for start-ups dedicated to Al application in medicine [1]. This commitment reflects the
interest in the potential of Al to improve healthcare. Precision medicine is a new approach
to health. In the last decade, the generation of Big Data through_genome sequencing
(i.e., genomic Big Data), the collection of clinical data, and the growth of bioinformatics
has made it possible to identify the genetic causes responsible for onset and progression of
diseases and to support the clinical management of patients. Despite the high expectations,
personalized therapeutic treatments still remain limited. A breakdown is the lack of Al
infrastructure and models capable of supporting the constant generation of genomic Big
Data [2]. Consequently, the challenge remains how to interpret the variety of information
contained in these data [3].
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Dive into the introduction

2nd paragraph Al to resolve cancer heterogeneity

The need for Al models is even more evident in complex diseases such as cancer.
The heterogeneity that characterizes Big Data is amplified in cancer, where diversity not

onlv manifests itself across individuals (i.e., inter-tumor) but also within each tumor

(i.e., intra-tumor) [4]. So far, cancer sequencing projects have made available genomic
profiles for thousands of biological samples, corresponding to petabytes of genetic in-
formation [5]. With the introduction of single-cell technologies, the complexity of ge-
nomic information has grown rapidly. This heterogeneity represents the major hurdle
to achieve effective precision oncology. Therefore, Al is the pivotal tool to exploit the
information available in genomic Big Data and ultimately “deliver” a medicine of preci-
sion. The COVID-19 pandemic has opened up new possibilities for Al development. The
pandemic has increased the use of Al in biomedical research: from remotely monitoring
patients, to predicting the spread of the SARS-CoV-2 coronavirus or in developing new
drugs [6,7]. The pandemic has also brought about new clinical practices, primarily the use

of mRNNA vaccines. This technological leap forward gives the possibility of accelerating the
delivery of similar therapies to cancer [8].
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Dive into the introduction

3rd paragraph Transcriptomics & Al to find biomarkers

 Yedch:-}

Transcriptomics generally refers to the high-throughput profiling of all RNA species

produced by cells. Among genomic Big Data, transcriptomics has seen an explosive growth

in recent years [9]. RNA sequencing (RINA-seq) profiles dynamic biological processes that
are active in a _population of cells or in single cells. Assessing the complexity of these
profiles could inform the discovery of new biomarkers and therapeutic targets. Since
RNA-seq screenings are becoming part of precision medicine trials [10,11], Al mining of

these data is thus required to determine novel clinical targets.
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Dive into the introduction

4th paragraph What we will and will not find while reading the paper
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In this paper, we provide an overview of Al approaches applied to high-volume bulk
and single-cell RNA-seq in cancer genomics and precision oncology. We do not intend to

provide a comprehensive characterization of all published Al methods and their technical
details. By contrast, we illustrate the major Al solutions to disentangle the heterogeneity of
cancer transcriptomes for an effective improvement of patient management. We explain
distinct strategies to face the “heterogeneity challenge”. We then outline some of the major

contributions of applying Al to the needs of cancer genomics, from identifying rare cancer
subtypes to personalizing treatment for individuals.
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Figures and tables
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Figure 1. The graph shows the number of PubMed publications per years containing the
reported keywords.
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Figures and tables

Table 1. The table reports the number of publicly available bulk and single-cell RN A-seq experiments.
Data stored in reported repository are frozen at 15 March 2021.

Repository URL Bulk Single-Cell

GDC portal.gdc.cancer.gov 27,894 18
ENCODE www.encodeproject.org 2323 7

GEO www.ncbi.nlm.nih.gov/geo 30,510 2346

SRA www.ncbi.nlm.nih.gov/sra 1874 6428
St. Jude www.stjude.cloud 3215 -
ICGC dcc.icgc.org 12,840 -
GTEx www.gtexportal.org/home 17,382 -
DepMap depmap.org/portal 1376 -

Human Cell Atlas data.humancellatlas.org - 289
Single Cell Portal singlecell.broadinstitute.org - 83
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Figures and tables
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Figure 2. Sketch representing the analyses needed to decipher cancer heterogeneity and achieve an effective

precision oncology.
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Figures and tables
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Table 2. The table reports all learning approaches reported in the main text with respect to each section.

Section Method RNA-Seq Experiment Authors
Residual neural network single-cell Shaham et al., 2017 [47]
Batch-correction of technical autoencoder single-cell T. Wang et al., 2019 [48]
heterogeneity Autoencoder and iterative clustering single-cell Li et al., 2020 [49]
Supervised mutual nearest neighbor single-cell Yang et al., 2020 [50]
Convolutional neural network bulk Elbashir et al., 2019 [51]
Convolutional neural network bulk Lépez-Garcia et al., 2020 [52]
Feature extraction Deep generative models single-cell Ding et al., 2018 [53]
Wx, neural network bulk Park et al., 2019 [54]
Double Radial Basis Function Kernels bulk Liu et al., 2018 [55]
Rank-based normalization bulk Barbie et al., 2009 [56]

Data distribution

3 GSECA, Gene Set Enrichment Class Analysis bulk
transformation

Equal-width, equal-frequency binning,

Lauria et al., 2020 [57]

. bulk Jung et al., 2015 [58]
k-means clustering
Data reconstruction: the Autolmpute, autoencoder single-cell Talwar et al., 2018 [59]
sparsity issue ’ DeepImpute, autoencoder single-cell Arisdakessian et al., 2019 [60]
parsity DCA, autoencoder single-cell Eraslan et al., 2019 [61]
Non-negative matrix factorization bulk Wang et al., 2017 [62]
Topic modeling bulk Valle et al., 2020 [20]
Assessing inter-tumor Random forest bulk Alcaraz et al., 2017 [63]
hete r%) eneity: Partition around medoids bulk Zhang et al., 2020 [64]
classiﬁcati(%n of ?;ncer Naive Bayes classifier bulk Paquet et al., 2015 [65]
subtvpes Multiclass logistic regression bulk Cascianelli et al., 2020 [17]
P DeepType, neural network bulk Chen et al., 2020 [66]
CUP-AI-Dx, convolutional neural network bulk Zhao et al., 2020 [67]
DeepCC, neural network bulk Gao etal., 2019 [18]
Density clustering single-cell Izar et al., 2020 [68]
Defining cell types and | . . : Chen et al., 2020 [21], Zhou
lones Graph-based clustering single-cell etal,, 2020 [22]
Consensus clustering single-cell Garofano et al., 2021 [69]
DENDRO, kernel-based clustering single-cell Zhou et al., 2020 [70]
Interaction network and ridge regression bulk Kong et al., 2020 [26]
SIMMS, Interaction network and Cox .
Proportional Hazards bulk Haider et al., 2018 [27]
Biomarker identification ECMarker, Boltzman machines bulk Jinetal., 2020 [71]
Integration of ML techniques bulk van IJzendoorn et al., 2019 [33]
DRjCC, non-negative matrix factorization single-cell Wu et al., 2020 [28]
maximum relevance minimum redundancy, .
Support vector machine single-cell Cheng et al., 2020 [72]
Diffusion map, shared nearest-neighbor .
- . 3
clustering and Cox Proportional Hazards single-cell Zhang etal, 2020 [73]
Cox-nnet, neural network and Cox bulk Ching et al., 2018 [30]
Prediction of patient DeenS roportlorlla azalr< y dC
. epourv, neural network and Cox
survival Proportional Hazards bulk Katzman et al., 2018 [31]
AECOX, autoencoder and Cox
’ . 3
Proportional Hazards, bulk Huang et al., 2020 [32]
Neural network and Cox .
. 9
Proportional Hazards bulk Qiu et al., 2020 [29]
CIBERSORTYX, support vector regression single-cell/bulk Newman et al., 2015 [24]
A ‘ EPIC, least square regression single-cell/bulk Racle et al., 2017 [74]
ss'essmen't of tumor xCell, non-linear regression bulk Aran et al., 2017 [25]
microenvironment Graph-based clustering single-cell Chen et al., 2020 [75]
K-means clustering single-cell/bulk Zhu et al., 2021 [76]
Identification of Neopepsee, Naive Bayes, random forest, bulk Kim et al., 2018 [77]
neoepitopes support ve_ctor machine
MARIA, multimodal recurrent bulk Chen et al., 2019 [78]

neural network
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Figures and tables
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Figure 3. Graphical summary of Al approaches (columns) applied to solve tasks (rows) presented in this review. Cells show

the RNA-seq data type used for the analysis. The “immunotherapy” task includes assessment of tumor microenvironment
and identification of neoepitopes.
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Conclusions

1st extract

Despite the results achieved so far, the application of Al to cancer transcriptome Big
Data for valuable precision oncology is still limited. The complexity of cancer heterogeneity
remains the major challenge to disentangle.
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Conclusions

2nd extract

 Yedch:-}

On the one hand, Al represents the most pow-
erful tool to extract the real biological information from large-scale transcriptomic datasets.
As national and international sequencing consortia generate sequencing data, the ability of
DL algorithms to capture the hidden relationships responsible for a phenotype without
requiring a human supervision will become pivotal for our understanding of diseases
and guide personalized therapeutic interventions. On the other hand, Al data mining
poses several challenges. Harnessing Big Data carries with it the ‘curse of dimensional-

ity” phenomenon, or the need of more data when information increases [125,126]. When
dimensionality grows, data becomes sparse. Any sample is likely to be more separated
from its neighbors at the increase of the space dimensionality. Hence, having data fully
representative of the heterogeneity of a phenotype will become more and more complicated
as the variables of interest will increase. This holds particularly true for cancer types that
are rare and heterogeneous. Dimensionality reduction methods are a solution to mitigate
the curse of dimensionality. Similarly, data discretization approaches can help to reduce
dimensionality supporting the paradigm of “less is more”.

22
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Conclusions

3rd extract

Despite being powerful tools,
AT approaches require tailor-made designs to achieve good performances and biologically

relevant results. The “black-box” nature of learning algorithms needs to be fully exploited

to reach a comprehensive understanding of the cancer phenotype of interest. Improving

the interpretability of results of AI models remains an important challenge [127], especially
when selecting for therapeutic treatments.
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Conclusions

4th extract

However, the integration of prior biological
knowledge into the algorithms can guide toward this direction. Combining data from multi
omics approaches will provide a deeper understanding of cancer heterogeneity.
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Conclusions

5th extract

However,
new Al methods will be required to face the resulting curse of dimensionality. Of note, part
of cancer transcriptomic data originates from preclinical research employing cell lines and
mouse models. Despite the undeniable value of these data, molecular differences between
these models and patient tumors call for caution in extending results to the human sys-
tem [128,129]. Therefore, approaches aiming at delineating the similarities and differences
between preclinical and clinical transcriptomes are required for an effective application of
Al to improve the patient’s quality of life [130,131].
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Conclusions

o6th extract

The demand of Al in precision oncology will go hand in hand with the need of doctors
and experts that will be able to translate results into real precision therapeutic decisions
and participate actively in the development of learning strategies. In this light, a precision
Al-driven oncology will become effectively available on demand.
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Paper structure
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Introduction
Al in the Era of Transcriptomic Big Data
Managing the Heterogeneity of Cancer Transcriptomes
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3.2 Dimensionality Reduction Approaches
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3.3 Data Distribution Transformation
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2. Al in the era of transcriptomic big data

This is a general chapter, linked to figure 1 and 2, in which the relation
between Al and Big Data in transcriptomics is explained.

What does we mean with “Big Data”?
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Al is fundamental for the processing of Big Data
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Big Data in biology
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As a review is nothing without its citations, in each chapter from

here on we will explore one of them (instead of reading the
review’s text itself).

Before diving into individual papers focusing on RNA-
seguencing and Al, let’s make a general introduction.
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The idea of ML: how 1t was born...

The founding principle of ML is to emulate the functioning of biological neuron
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... and developed

Then perceptron evolved...
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Machine Learning methods
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Supervised Learning

In supervised learning data are labelled. Each point must present features (or
covariates) and a label. The goal is to learn a function that maps covariates into the
label.

Examples of supervised learning methods are Support Vectors Machines (SVMs).
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Unsupervised Learning

Unsupervised learning is an algorithm that tries learning patterns from non-labelled

data. The algorithm is, therefore, forced to build a simplified representation of data,
retrieving information from them.

Examples of unsupervised learning methods are Convolutional Neural Networks,
Autoencoders and Deep Neural Networks.
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What are we able to do using machine learning in bioinformatics?
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Let’s go back on our way... Al applied in RNA-seq analyses
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3. Managing the Heterogeneity of Cancer Transcriptomes

3.1 Batch-Correction of Technical Heterogeneity
Cit. 49

 Yedch:-}

Article | Open Access | Published: 11 May 2020

Deep learning enables accurate clustering with batch
effect removal in single-cell RNA-seq analysis

Xiangjie Li, Kui Wang, Yafei Lyu, Huize Pan, Jingxiao Zhang, Dwight Stambolian, Katalin Susztak,
Muredach P. Reilly, Gang Hu & & Mingyao Li

Nature Communications 11, Article number: 2338 (2020) | Cite this article

36k Accesses | 127 Citations | 27 Altmetric | Metrics

https://www.nature.com/articles/
s41467-020-15851-3
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3. Managing the Heterogeneity of Cancer Transcriptomes

3.1 Batch-Correction of Technical Heterogeneity
Cit. 49

Abstract

Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through

unsupervised clustering, but the ever increasing number of cells and batch effect impose

computational challenges. We present DESC, an unsupervised deep embedding algorithm

that clusters sCRNA-seq data by iteratively optimizing a clustering objective function.

Through iterative self-learning, DESC gradually removes batch effects, as long as technical

differences across batches are smaller than true biological variations. As a soft clustering

algorithm, cluster assignment probabilities from DESC are biologically interpretable and can
reveal both discrete and pseudotemporal structure of cells. Comprehensive evaluations show
that DESC offers a proper balance of clustering accuracy and stability, has a small footprint on
memory, does not explicitly require batch information for batch effect removal, and can

utilize GPU when available. As the scale of single-cell studies continues to grow, we believe
DESC will offer a valuable tool for biomedical researchers to disentangle complex cellular

heterogeneity.
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aOverview of the DESC framework. DESC starts with parameter initialization in which a stacked
autoencoder is used for pretraining and learning a low-dimensional representation of the input gene
expression matrix. The resulting encoder is then added to the iterative clustering neural network to
cluster cells iteratively. The final output of DESC includes cluster assignment, the corresponding

probabilities for cluster assignment for each cell, and the low-dimensional representation of the data;

‘ C.G.B. 49

a The t-SNE plots in which cells were colored by batch.
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Abstract

Deep learning methods for digital pathology analysis are an effective way to address multiple

clinical questions, from diagnosis to prediction of treatment outcomes. These methods have

also been used to predict gene mutations from pathology images, but no comprehensive

evaluation of their potential for extracting molecular features from histology slides has yet

been performed. We show that HE2RNA, a model based on the integration of multiple data

modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images

alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual

spatialization of gene expression, as validated by CD3- and CD20-staining on an independent

dataset. The transcriptomic representation learned by HE2RNA can also be transferred on
other datasets, even of small size, to increase prediction performance for specific molecular

phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the

identification of tumors with microsatellite instability.
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Fig. 1

Hematoxylin & eosin (H&E)-stained histology slides and RNA-Seq data (FPKM-UQ values) for 28
different cancer types and 8725 patients were collected from The Cancer Genome Atlas (TCGA) and

used to train the neural network HE2RNA to predict transcriptomic profile from the corresponding

high-definition whole-slide images (WSI). During this task, the neural network learned an internal

representation encoding both information from tiled images and gene expression levels. This

hd

Transcriptomic
representation

transcriptomic representation can be used for: (1) transcriptome prediction from images without

Transfer learning

associated RNA sequencing. (2) The virtual spatialization of transcriptomic data. For each predicted

Results improvements coding or noncoding gene, a score is calculated for each tile on the corresponding WSI, which canbe

ROFRSS] Stiis interpreted as the predicted gene expression for this tile (even though the real value is available only

Whole-slide images

for the slide). These predictive scores can be used to generate heatmaps for each gene for which

expression is significantly predicted. (3) Improving predictive performances for different tasks, ina
transfer learning framework, as shown here for a realistic setup, for microsatellite instability (MSI)

status prediction from non-annotated WSiIs. Scale bar: 5 mm.

Transcriptome prediction 6 5 Virtual spatialization

Transcriptomic data 3 32 34 36 38 4 42 44 45 48
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Abstract

Background

Using knowledge-based interpretation to analyze omics data can not only obtain essential
information regarding various biological processes, but also reflect the current physiological
status of cells and tissue. The major challenge to analyze gene expression data, with a large

number of genes and small samples, is to extract disease-related information from a massive

amount of redundant data and noise. Gene selection, eliminating redundant and irrelevant

genes, has been a key step to address this problem.

Results

The modified method was tested on four benchmark datasets with either two-class phenotypes

or multiclass phenotypes, outperforming previous methods, with relatively higher accuracy,

true positive rate, false positive rate and reduced runtime.

Conclusions

This paper proposes an effective feature selection method, combining double RBF-kernels

with weighted analysis, to extract feature genes from gene expression data, by exploring its

nonlinear mapping ability.
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Fig. 6

Selected feature genes Selected feature genes

a b
The colormap of the expression profiles for nine most significant genes selected by DKBCGS (a) and

for 9 randomly chosen genes (b). The red line distinguishes between cancer samples and normal
samples
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Abstract

Gene expression measurements represent the most important source of

biological data used to unveil the interaction and functionality of genes. In this

regard, several data mining and machine learning algorithms have been
proposed that require, in a number of cases, some kind of data discretization to
perform the inference. Selection of an appropriate discretization process has a

major impact on the design and outcome of the inference algorithms, as there

are a number of relevant issues that need to be considered. This study presents
a revision of the current state-of-the-art discretization techniques, together
with the key subjects that need to be considered when designing or selecting a
discretization approach for gene expression data.

Keywords: discretization, data preprocessing, gene expression data, gene
expression analysis, data mining, machine learning

Issue Section: Papers
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An example of expression distribution discretisation... The Gene Set Enrichment Class Analysis (GSECA)
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Abstract

The emergence of single-cell RNA sequencing (sScCRNA-seq) technologies has enabled us to

measure the expression levels of thousands of genes at single-cell resolution. However,

insufficient quantities of starting RNA in the individual cells cause significant dropout events,

introducing a large number of zero counts in the expression matrix. To circumvent this, we

developed an autoencoder-based sparse gene expression matrix imputation method.

Autolmpute, which learns the inherent distribution of the input scRNA-seq data and imputes

the missing values accordingly with minimal modification to the biologically silent genes.

When tested on real scRNA-seq datasets, Autolmpute performed competitively wrt., the
existing single-cell imputation methods, on the grounds of expression recovery from

subsampled data, cell-clustering accuracy, variance stabilization and cell-type separability.
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- Data Preprocessing
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Q Normalization
Q Gene Selection
Q Log Transformation

Cells — _

Input to

Autolmpute
R=M X
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Number Bf Genes

Imputed Matrix ‘ Y /| Y /
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(D) l (E)
Autolmpute pipeline: The raw gene expression data is filtered for bad genes, normalized by library Hidd?: )Units
size, pruned by gene-selection and log transformed. Then, the processed matrix is fed to the Autolmpute Model

Autolmpute model for learning expression data representation and finally reconstructing the imputed

matrix.
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Abstract

The identification of cancer-promoting genetic alterations is challenging particularly in

highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here

we describe a machine learning algorithm to identify cancer genes in individual patients
considering all types of damaging alterations simultaneously. Analysing 261 EACs from the
OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote

cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent

alterations of known drivers, these cancer helper genes are rare or patient-specific. However,
they converge towards perturbations of well-known cancer processes. Recurrence of
the same process perturbations, rather than individual genes, divides EACs into six clusters

differing in their molecular and clinical features. Experimentally mimicking the alterations of

predicted helper genes in cancer and pre-cancer cells validates their contribution to disease
progression, while reverting their alterations reveals EAC acquired dependencies that can be
exploited in therapy.

57

UNIVERSITA
DEGLI STUDI
DI MILANO



sysSVM

4. Al mining of cancer transcriptomes

Linear Radial Linear Radial |
. el Samples

.-
-

3 4 A = ," ,'." ) :‘ HER W

e tls . et BER B|e

) " SseSSI n g * Sigmoid Polynomial * Sigmo!d Polynomial * e 153

inter-tumor E N AR RN

h ete ro g e n e Ity: ; ..l;:rame.t:. = Be.sl models . Comparison of ranked genes
w.L = STEP 1 STEP 2 ~ STEP3 _ Final list

c I ass Ifl catl o n Feature mapping Model selection Training and prediction of cancer genes

of cancer b

SUbtypeS | STEP 1 STEP 2 STEP 3 |
. 17,078 genes _) 476 known cancer genes * 16,602 genes _)' 952 genes
Cit. 111

Sensitivity
Genes

-
.

\.,
Ve

damaged 116,989 times damaged 4091 times damaged 112,898 times damaged 2608 times

Fig. 1
Known
cancer genes
Cancer helper genes in 261 EACs. a Schematic workflow of the sysSVM algorithm. b Application of y
sysSVM to 261 EACs. Genes with somatic damaging alterations (n =116,989) were extracted from 261 Holper
EACs and divided into training (known cancer genes, blue) and prediction (rest of altered genes, score

purple) sets. sysSVM was trained on the properties of known drivers and the best models were used
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considered as the cancer helper genes in that patient, for a total of 2608 helper alterations,
corresponding to 952 unique hits (red). ¢ t-distributed Stochastic Neighbour Embedding (t-SNE) plot
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Defining Cell Types and Clones

Abstract

Although scRNA-seq is now ubiquitously adopted in studies of intratumor heterogeneity,
detection of somatic mutations and inference of clonal membership from scRNA-seq is

currently unreliable. We propose DENDRO, an analysis method for scRNA-seq data that

clusters single cells into genetically distinct subclones and reconstructs the phylogenetic tree

relating the subclones. DENDRO utilizes transcribed point mutations and accounts for

technical noise and expression stochasticity. We benchmark DENDRO and demonstrate its
application on simulation data and real data from three cancer types. In particular, on a
mouse melanoma model in response to immunotherapy, DENDRO delineates the role of
neoantigens in treatment response.

The DENDRO package, implemented in R, is available at

https://github.com /zhouzilu/DENDRO, where we also provide a power calculation toolkit,

DENDROPplan, to aid in the design of scRNA-seq experiments for subclonal mutation analysis

using DENDRUO.
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Abstract

Osteosarcoma is the most frequent primary bone tumor with poor prognosis. Through RNA-
sequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung metastatic
osteosarcoma lesions, 11 major cell clusters are identified based on unbiased clustering of
gene expression profiles and canonical markers. The transcriptomic properties, regulators

and dynamics of osteosarcoma malignant cells together with their tumor microenvironment

particularly stromal and immune cells are characterized. The transdifferentiation of

malignant osteoblastic cells from malignant chondroblastic cells is revealed by analyses of
inferred copy-number variation and trajectory. A proinflammatory FABP4* macrophages

infiltration is noticed in lung metastatic osteosarcoma lesions. Lower osteoclasts infiltration

is observed in chondroblastic, recurrent and lung metastatic osteosarcoma lesions compared

to primary osteoblastic osteosarcoma lesions. Importantly, TIGIT blockade enhances the

cytotoxicity effects of the primary CD3™ T cells with high proportion of TIGIT* cells against

osteosarcoma. These results present a single-cell atlas, explore intratumor heterogeneity,

and provide potential therapeutic targets for osteosarcoma.
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Abstract

Based on morphology it is often challenging to distinguish between the many different soft tissue
sarcoma subtypes. Moreover, outcome of disease is highly variable even between patients with the
same disease. Machine learning on transcriptome sequencing data could be a valuable new tool to

understand differences between and within entities. Here we used machine learning analysis to
identify novel diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas.
Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue Expression
project and the French Sarcoma Group. We identified three groups of tumors that overlap in their
molecular profiles as seen with unsupervised t-Distributed Stochastic Neighbor Embedding
clustering and a deep neural network. The three groups corresponded to subtypes that are
morphologically overlapping. Using a random forest algorithm, we identified novel diagnostic
markers for soft tissue sarcoma that distinguished between synovial sarcoma and MPNST, and that
we validated using gRT-PCR in an independent series. Next, we identified prognostic genes that are
strong predictors of disease outcome when used in a k-nearest neighbor algorithm. The prognostic
genes were further validated in expression data from the French Sarcoma Group. One of these,
HMMR, was validated in an independent series of leiomyosarcomas using immunohistochemistry
on tissue micro array as a prognostic gene for disease-free interval. Furthermore, reconstruction of
regulatory networks combined with data from the Connectivity Map showed, amongst others, that
HDAC inhibitors could be a potential effective therapy for multiple soft tissue sarcoma subtypes. A
viability assay with two HDAC inhibitors confirmed that both leiomyosarcoma and synovial sarcoma
are sensitive to HDAC inhibition. In this study we identified novel diagnostic markers, prognostic
markers and therapeutic leads from multiple soft tissue sarcoma gene expression datasets. Thus,

machine learning algorithms are powerful new tools to improve our understanding of rare tumor

entities.
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CMAP analysis to identify novel therapies.

(a) CMAP analysis identifies potential drugs based on the expression profile. The chord diagram shows links between the
drugs and soft tissue sarcoma subtypes. Some compounds such as trichostatin A, doxorubicin and tanespimycin show
connections with multiple soft tissue sarcoma subtypes, which is illustrated by the box color for each drug (darker red

indicates more connections). (b) The dose response curves are shown for both trichostatin A (TSA) and quisinostat as tested
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We introduce random survival forests, a random forests method for the

analysis of right-censored survival data. New survival splitting rules for grow-

ing survival trees are introduced, as is a new missing data algorithm for im-
puting missing data. A conservation-of-events principle for survival forests is
introduced and used to define ensemble mortality, a simple interpretable mea-
sure of mortality that can be used as a predicted outcome. Several illustrative
examples are given, including a case study of the prognostic implications of
body mass for individuals with coronary artery disease. Computations for all

examples were implemented using the freely available R-software package,

randomSurvivalForest.
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Abstract

Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class I

molecules would be valuable for vaccine development and cancer immunotherapies. Current

computational methods trained onin vitro binding data are limited by insufficient training
data and algorithmic constraints. Here we describe MARIA (major histocompatibility

complex analysis with recurrent integrated architecture; https://maria.stanford.edu/), a

multimodal recurrent neural network for predicting the likelihood of antigen presentation

from a gene of interest in the context of specific HLA class Il alleles. In addition to in vitro

binding measurements, MARIA is trained on peptide HLA ligand sequences identified by mass

spectrometry, expression levels of antigen genes and protease cleavage signatures. Because it

leverages these diverse training data and our improved machine learning framework, MARIA

(areaunder the curve = 0.89-0.92) outperformed existing methods in validation datasets.

Across independent cancer neoantigen studies, peptides with high MARIA scores are more
likely to elicit strong CD4" T cell responses. MARIA allows identification of immunogenic

epitopes in diverse cancers and autoimmune disease.
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proteins (y axis); remaining peptides are separately depicted in Supplementary Fig. 1. e, Training and evaluation scheme of MARIA, as anew machine
learning framework for more accurate prediction of HLA-II ligands. Positive examples are HLA-Il ligand peptide sequences directly identified by antigen
presentation profiling of human cells and tissues by immunoprecipitation (i.p.) and MS, and negative examples are length-matched random human
peptides (decoys). The model separately considers binding affinities estimated using in vitro binding data. Patient HLA-II allele or genotype and gene
expression information are obtained from next-generation sequencing. A RNN integrates information and produces a predictor for HLA-II ligand

presentation by minimizing training errors. Independent test sets determine the final performance of the model. See Supplementary Fig. 2 for detailed
machine learning schemes.
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