Understanding a review (while learning about machine learning;)

2024-04-18

Review

Artificial Intelligence in <u>Bulk and Single-Cell RNA-Sequencing</u> Data to Foster <u>Precision Oncology</u>

Artificial Intelligence

Artificial intelligence (AI) is the capability of a computer system to mimic human cognitive functions such as learning and problem-solving. Through AI, a computer system uses math and logic to simulate the reasoning that people use to learn from new information and make decisions.

Bulk and Single-Cell RNA-Sequencing

Bulk RNA-seq captures the average of expression profiles of thousands of cells, while single-cell RNA-seq allows the capture of individual measurements.

Precision Oncology

Precision oncology is the molecular profiling of tumours to identify targetable alterations. The goal of precision medicine is to **deliver** the **personalised treatment** to **each patient**.

Explore the authors... do you know someone?

Marco Del Giudice ^{1,2,†}, Serena Peirone ^{1,3,†}, Sarah Perrone ^{1,4}, Francesca Priante ^{1,4}, Fabiola Varese ^{1,5}, Elisa Tirtei ⁶, Franca Fagioli ^{6,7} and Matteo Cereda ^{1,2,*}

- ¹ Cancer Genomics and Bioinformatics Unit, IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy; delgiudice.borsisti@iigm.it (M.D.G.); serena.peirone@edu.unito.it (S.P.); sarah.perrone@edu.unito.it (S.P.); priante.borsisti@iigm.it (F.P.); varese.borsisti@iigm.it (F.V.)
- ² Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, TO, Italy
- ³ Department of Physics and INFN, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
- ⁴ Department of Physics, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
- ⁵ Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
- ⁶ Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, 10126 Turin, Italy; elisa.tirtei@gmail.com (E.T.); franca.fagioli@unito.it (F.F.)
- ⁷ Department of Public Health and Paediatric Sciences, University of Torino, 10124 Turin, Italy
- * Correspondence: matteo.cereda@iigm.it; Tel.: +39-011-993-3969
- + The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Search the date... is it recent?

Citation: Del Giudice, M.; Peirone, S.; Perrone, S.; Priante, F.; Varese, F.; Tirtei, E.; Fagioli, F.; Cereda, M. Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology. *Int. J. Mol. Sci.* 2021, 22, 4563. https://doi.org/ 10.3390/ijms22094563

Academic Editor: Jung Hun Oh

Received: 20 March 2021 Accepted: 23 April 2021 Published: 27 April 2021

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

> UNIVERSITÀ DEGLI STUDI DI MILANO

Notice the number of references

References

1. Watch, A.I. Jrc Science for Policy Report. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC12021 4/jrc120214_ai_in_medicine_and_healthcare_report-aiwatch_v50.pdf (accessed on 28 February 2021).

. . .

131. Dharia, N.V.; Kugener, G.; Guenther, L.M.; Malone, C.F.; Durbin, A.D.; Hong, A.L.; Howard, T.P.; Bandopadhayay, P.; Wechsler, C.S.; Fung, I.; et al. A First-Generation Pediatric Cancer Dependency Map. *Nat. Genet.* 2021, *53*, 529–538. [CrossRef] [PubMed]

Are there any keywords?

Keywords: artificial intelligence; RNA sequencing; cancer heterogeneity

Are there any keywords?

What's heterogeneity in cancer? Heterogeneity between: **Tumor types**

Patients sharing the same tumor type

Different clones in the same tumor

B. Intra-tumour heterogeneity (ITH)

C.G.B.

Understand the abstract

C.G.B.

Abstract: Artificial intelligence, or the discipline of developing computational algorithms able to perform tasks that requires human intelligence, offers the opportunity to improve our idea and delivery of precision medicine. Here, we provide an overview of artificial intelligence approaches for the analysis of large-scale RNA-sequencing datasets in cancer. We present the major solutions to disentangle inter- and intra-tumor heterogeneity of transcriptome profiles for an effective improvement of patient management. We outline the contributions of learning algorithms to the needs of cancer genomics, from identifying rare cancer subtypes to personalizing therapeutic treatments.

1st paragraph Al progression, importance and limitations in precision medicine

Artificial intelligence (AI) is becoming a <u>fundamental asset for healthcare and life</u> <u>science research</u>. Despite being in its infancy, research activities employing AI are changing our understanding and vision of science. The European Commission has recently estimated that <u>13% of global venture capital investments</u> (i.e., ~5 billion of Euros) are for start-ups dedicated to AI application in medicine [1]. This commitment reflects the interest in the potential of AI to improve healthcare. Precision medicine is a new approach to health. In the last decade, the generation of <u>Big Data</u> through genome sequencing (i.e., genomic Big Data), the collection of clinical data, and the growth of bioinformatics has made it possible to identify the genetic causes responsible for onset and progression of diseases and to support the clinical management of patients. Despite the high expectations, personalized therapeutic treatments still remain limited. A breakdown is the lack of AI infrastructure and models capable of supporting the constant generation of genomic Big Data [2]. Consequently, the challenge remains how to interpret the variety of information contained in these data [3].

2nd paragraph **AI to resolve cancer heterogeneity**

The <u>need for AI</u> models is even more evident in <u>complex diseases such as cancer</u>. The <u>heterogeneity</u> that characterizes Big Data is <u>amplified in cancer</u>, where diversity not only manifests itself across individuals (i.e., inter-tumor) but also within each tumor (i.e., intra-tumor) [4]. So far, <u>cancer sequencing</u> projects have made available genomic profiles for thousands of biological samples, <u>corresponding to petabytes of genetic information [5]</u>. With the introduction of <u>single-cell technologies</u>, the <u>complexity of genomic information has grown rapidly</u>. This heterogeneity represents the major hurdle to achieve effective precision oncology. Therefore, <u>AI</u> is the pivotal tool to exploit the information available in genomic Big Data and ultimately "deliver" a medicine of precision. The COVID-19 pandemic has opened up new possibilities for AI development. The pandemic has increased the use of AI in biomedical research: from remotely monitoring patients, to predicting the spread of the SARS-CoV-2 coronavirus or in developing new drugs [6,7]. The pandemic has also brought about new clinical practices, primarily the use of mRNA vaccines. This technological leap forward gives the possibility of accelerating the delivery of similar therapies to cancer [8].

3rd paragraph **Transcriptomics & AI to find biomarkers**

<u>Transcriptomics</u> generally refers to the <u>high-throughput profiling of all RNA species</u> <u>produced by cells</u>. Among genomic Big Data, transcriptomics has seen an explosive growth in recent years [9]. <u>RNA sequencing (RNA-seq) profiles dynamic biological processes</u> that are active in a <u>population of cells or in single cells</u>. Assessing the complexity of these profiles could inform the discovery of <u>new biomarkers and therapeutic targets</u>. Since RNA-seq screenings are becoming part of precision medicine trials [10,11], <u>AI mining of</u> these data is thus required to determine novel clinical targets.

4th paragraph What we will and will not find while reading the paper

In this paper, we provide an overview of AI approaches applied to high-volume bulk and single-cell RNA-seq in cancer genomics and precision oncology. We do not intend to provide a comprehensive characterization of all published AI methods and their technical details. By contrast, we illustrate the major AI solutions to disentangle the heterogeneity of cancer transcriptomes for an effective improvement of patient management. We explain distinct strategies to face the "heterogeneity challenge". We then outline some of the major contributions of applying AI to the needs of cancer genomics, from identifying rare cancer subtypes to personalizing treatment for individuals.

Figure 1. The graph shows the number of PubMed publications per years containing the reported keywords.

Table 1. The table reports the number of publicly available bulk and single-cell RNA-seq experiments. Data stored in reported repository are frozen at 15 March 2021.

Repository	URL	Bulk	Single-Cell
GDC	portal.gdc.cancer.gov	27,894	18
ENCODE	www.encodeproject.org	2323	7
GEO	www.ncbi.nlm.nih.gov/geo	30,510	2346
SRA	www.ncbi.nlm.nih.gov/sra	1874	6428
St. Jude	www.stjude.cloud	3215	-
ICGC	dcc.icgc.org	12,840	-
GTEx	www.gtexportal.org/home	17,382	-
DepMap	depmap.org/portal	1376	-
Human Cell Atlas	data.humancellatlas.org	-	289
Single Cell Portal	singlecell.broadinstitute.org	-	83

Figure 2. Sketch representing the analyses needed to decipher cancer heterogeneity and achieve an effective precision oncology.

Table 2. The table reports all learning approaches reported in the main text with respect to each section.

Batch-correction of technical heterogeneity Residual neural network autoencoder single-cell single-cell Shaham et al., 2017 [47] Batch-correction of technical heterogeneity Autoencoder and letative clustering super-side mutual neural network Deep generative models single-cell single-cell T. Wang et al., 2019 [49] Corroutinonal neural network Deuty Bernative models single-cell single-cell Lie et al., 2020 [51] Feature extraction Deep generative models bulk Duble Rodal Basis function Kernels bulk bulk Environmental et al., 2019 [51] Data distribution transformation CSECA (cene get Enrichment Class Analysis Equal-witht, equal-frequency birming, bulk bulk Barbie et al., 2009 [55] Data reconstruction: the spansity issue AutoImpute, autoencoder isingle-cell single-cell Tailware et al., 2019 [61] Non-negative matrix factorization beterogeneity: Non-negative matrix factorization bulk bulk Wang et al., 2016 [52] Assessing inter-tumor heterogeneity: Random forest bulk bulk Valae et al., 2020 [20] Assessing inter-tumor heterogeneity: Random forest bulk bulk Valae et al., 2020 [21] Cores Cores-core machine fulctores Single-cell Carcenet al., 2020 [21] Deefining ce	Section	Method	RNA-Seq Experiment	Authors
Batch-correction of rectinical autoencoder single-cell T. Wang et al., 2019 [45] heterogeneity Autoencoder and iterative clastering single-cell Yang et al., 2019 [51] Convolutional neural network balk Elbaskir et al., 2019 [51] Elbaskir et al., 2019 [51] Feature extraction Derp generative models single-cell Ding et al., 2019 [51] Data distribution CSECA, Cene Set Enrichment Class Analysis bulk Laura et al., 2018 [53] Data distribution CSECA, Cene Set Enrichment Class Analysis bulk Laura et al., 2019 [54] Data distribution CSECA, Cene Set Enrichment Class Analysis bulk Laura et al., 2019 [50] Data reconstruction: the Decelmpute, autoencoder single-cell Antod Mynube, autoencoder single-cell Antod Mynube, autoencoder single-cell Tolware et al., 2019 [50] Non-negative matrix factorization bulk Wale et al., 2020 [57] Assessing inter-tumor Random forest bulk Wale et al., 2020 [20] Autoencoder Single-cell Multidas bigstir ergression bulk Autoencoder single-cell Arisdassin et al., 2020 [20] <td></td> <td>Residual neural network</td> <td>single-cell</td> <td>Shaham et al., 2017 [47]</td>		Residual neural network	single-cell	Shaham et al., 2017 [47]
beterogeneity Auteencoder and iterative clustering single-cell Life 41, 2020 [59] Supervised mutual neural network bulk Elbashirr etal, 2020 [50] Feature extraction Convolutional neural network bulk Lipre-Carline at al, 2020 [50] Duble Radial Basis Function Kernels bulk Darg et al, 2020 [57] Duble Radial Basis Function Kernels bulk Daria et al, 2020 [57] Data distribution CSECA Cene est Enrichment Class Analysis bulk Daria et al, 2020 [57] Data reconstruction: the sparsity issue Deepfinpute, autoencoder single-cell Antodimpute, autoencoder single-cell Anticalacesian et al, 2020 [57] Data reconstruction: the sparsity issue Deepfinpute, autoencoder single-cell Anticalacesian et al, 2020 [57] Mate extraction of cancer AutoImpute, autoencoder single-cell Anticalacesian et al, 2020 [57] Assessing inter-tumor Random forest bulk Ware et al, 2020 [20] Assessing inter-tumor Resessing inter-tumor Random forest bulk Cancer et al, 2020 [21] Concer et al, 2020 [22] Cuestion of cancer Muticalasoligoit: ergression bulk <	Batch-correction of technical	autoencoder	single-cell	T Wang et al. 2019 [48]
Supervised mutual nearst neighbor single-cell Yang et al, 2020 [50] Convolutional neural network bulk Elbashir et al., 2019 [51] Convolutional neural network bulk Diper Carcia et al, 2020 [52] Peature extraction Derp generative models single-cell Ding et al, 2018 [53] Data distribution CSECA, Gene Set Enrichment Class Analysis bulk Laura et al., 2018 [53] Data distribution CSECA, Gene Set Enrichment Class Analysis bulk Laura et al., 2018 [53] Data meconstruction: the DeepImpute, autoencoder single-cell Talwart et al., 2019 [54] Matto Pinzbe, autoencoder single-cell Antoffmynute, autoencoder single-cell Antoffmynute, autoencoder Single-cell Non-negative matrix factorization bulk Wale et al., 2019 [51] Assessing inter-tumor Random forest bulk Wale et al., 2010 [53] Assessing inter-tumor Random forest bulk Autoer et al., 2020 [63] Cure-tal-struction of cancer single-cell Autoer et al., 2020 [63] DeepStype Dernsity classtring single-cell Caracta et al., 2020 [63]	heterogeneity	Autoencoder and iterative clustering	single-cell	I = 100000000000000000000000000000000000
Data Convolutional neural network Convolutional neural network bulk bulk Ebbashier et al., 2019 [51] Discrete al., 2010 [52] Dring et al., 2016 [53] Wx, neural network Data Deep generative models single-cell Dring et al., 2019 [53] Discrete al., 2010 [53] Data distribution transformation Rark-based normalization GECA, Cene Set Enrichment Class Analysis bulk Luc et al., 2019 [56] Data distribution transformation GECA, Cene Set Enrichment Class Analysis bulk Laure et al., 2019 [56] Data distribution transformation GECA, Cene Set Enrichment Class Analysis bulk Laure et al., 2019 [57] Data meconstruction: the sparsity issue Deep Impute, autoencoder single-cell Ariadware stal, 2019 [60] Non-negative matrix factorization bulk Vang et al., 2017 [62] Ariadware stal, 2019 [60] Assessing inter-tumor heterogeneity: Narve Bayes classifier bulk Vang et al., 2020 [72] Classification of cancer subtypes Partition around medoids bulk Classifier al., 2020 [72] Deefining cell types and clones Graph-based clustering single-cell Larvet al., 2020 [72] Defining cell types and clones Graph-based clustering <td>neterogeneity</td> <td>Supervised mutual nearest neighbor</td> <td>single-cell</td> <td>Yang et al. 2020 [50]</td>	neterogeneity	Supervised mutual nearest neighbor	single-cell	Yang et al. 2020 [50]
Convolutional neural network bulk Lipsez, Sarcia et al., 2020 [57] Feature extraction Deep generative models single-cell Dirac et al., 2020 [57] Data distribution Rank-based normalization bulk Bathe et al., 2020 [57] Data distribution CSECA, Care Set Enrichment Class Analysis bulk Laura et al., 2020 [57] Data meconstruction: the aqual-frequency binning, bulk bulk Bathe et al., 2020 [57] Data meconstruction: AutoImpute, autoencoder single-cell Arisdaware tal., 2019 [61] Sparsity issue Doc, autoencoder single-cell Arisdawer tal., 2017 [62] Assessing inter-tumor heterogeneity: Convolutional neural network bulk Wang et al., 2017 [62] CUP-AI-Dx, convolutional neural network bulk Valle et al., 2020 [67] Mathee al., 2020 [67] Defining cell types and clones Convolutional neural network and Cox Proportional Hazards bulk Gate et al., 2020 [22] Defining cell types and clones Convolutional neural network and Cox Proportional Hazards bulk Gate et al., 2020 [21] Density clustering single-cell Chatet et al., 2020 [22] Lavat et al.,		Convolutional neural network	bulk	Flbashir et al. 2019 [51]
Feature extraction Deep generative models single-cell Direct at a, 2007 [53] Data distribution transformation CGECA, Gene Set Enrichment Class Analysis Equal-width, equal-frequency binning, k-means clustering bulk Barbie et al, 2009 [53] Data distribution transformation CGECA, Gene Set Enrichment Class Analysis Equal-width, equal-frequency binning, k-means clustering bulk Barbie et al, 2009 [57] Data meconstruction: the sparsity issue AutoEnroder single-cell Talwar et al, 2019 [60] Assessing inter-tumor heterogeneity: Non-negative matrix factorization bulk Valle Valle (al, 2020 [77] Assessing inter-tumor heterogeneity: Non-negative matrix factorization bulk Valle (al, 2020 [76] CUP-AL-Dx, convolutional neural network bulk Charar et al, 2020 [76] Cascianell'et al, 2020 [76] Desity classification of cancer subtypes Density clustering single-cell Cascianell'et al, 2020 [76] Density clustering single-cell Consensus clustering single-cell Can et al, 2020 [76] Defining cell types and clones Graph-based clustering single-cell Can et al, 2020 [71] Consensus clustering single-cell Chen et al, 2020 [72] <		Convolutional neural network	bulk	Lionoz-Carcía et al. 2019 [51]
Peak life extraction Deep performer intoities single-cell Data (2019) [53] Data distribution Rark-based normalization bulk Laura et al., 2009 [56] Data distribution GSECA, Cene Set Enrichment Class Analysis bulk Laura et al., 2009 [56] Data meconstruction: Head Mathematic Representation bulk Laura et al., 2009 [56] Data meconstruction: AutoImpute, autoencoder single-cell Arisdakessian et al., 2019 [56] Data meconstruction: Non-negative matrix factorization bulk Wang et al., 2017 [62] Assessing inter-tumor Random forest bulk Value et al., 2020 [67] Assessing inter-tumor Partition around medoids bulk Value et al., 2020 [61] Multiclass logistic regression bulk Chen et al., 2020 [62] Chen et al., 2020 [63] Defining cell types and clastering single-cell Chen et al., 2020 [71] Chen et al., 2020 [72] Defining cell types and clastering single-cell Chen et al., 2020 [72] Chen et al., 2020 [72] Defining cell types and clastering single-cell Chen et al., 2020 [72] Chen et al., 2020 [72]	Easture systemation	Doop generative models	single coll	Ding at al. 2018 [52]
Double Radial Basis Function Kernels bulk List et al., 2019 [53] Data distribution transformation GECA, Gere Set Enrichment Class Analysis bulk Lauria et al., 2020 [57] Data distribution transformation GECA, Gere Set Enrichment Class Analysis bulk Lauria et al., 2018 [59] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talvar et al., 2019 [51] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talvar et al., 2019 [51] Assessing inter-tumor heterogeneity: classification of cancer Topic modeling bulk Wale et al., 2020 [20] Assessing inter-tumor heterogeneity: subtypes Non-negative matrix factorization bulk Zhang et al., 2020 [21] Derg/Type, neural network bulk Cancer et al., 2020 [21] Cancer et al., 2020 [21] CUP-AI-Dx, convolutional neural network bulk Chen et al., 2020 [21] Chen et al., 2020 [22] Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21] Defining cell types and clones Density clustering single-cell Chen et al., 2020 [21] Defining cell types and clones	reature extraction	We neural natural	single-cell	Dirig et al., 2010 [55]
Data distribution transformation Rank-based normalization GSECA, Gene Set Enrichment Class Analysis Equal-width, equal-frequency binning, k-means clustering bulk Barthie et al., 2009 [56] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talwar et al., 2018 [59] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Aristalessian et al., 2019 [60] Assessing inter-tumor heterogeneity: Non-negative matrix factorization Topic modeling bulk Wang et al., 2017 [62] Assessing inter-tumor heterogeneity: Random forest bulk Paquet et al., 2020 [20] CUP-AI-DX, convolutional neural network clones Derightype, scutoentok bulk Chen et al., 2020 [66] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [66] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [66] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [62] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [72] Defining cell types and clones Graph-based clustering single-cell		Double Padial Pasia Function Vernale	bulk	Lin et al. 2019 [54]
Data distribution transformation Rank-based normalization GSEQA, Gene Set Enrichment Class Analysis bulk bulk Lauria et al., 2020 [57] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talwar et al., 2019 [69] Data reconstruction: the sparsity issue DeepImpute, autoencoder single-cell Eraslan et al., 2019 [60] Assessing inter-tumor heterogeneity: Non-negative matrix factorization bulk Ware et al., 2017 [62] Assessing inter-tumor heterogeneity: Partition around medoids bulk Zhang et al., 2020 [64] Classification of cancer subtypes DeepType, neural network bulk Chac et al., 2020 [67] DeepType, neural network bulk Chac et al., 2020 [67] Chac et al., 2020 [67] DeepType, neural network bulk Chac et al., 2020 [67] Chac et al., 2020 [67] Defining cell types and clones Graph-based clustering single-cell Char et al., 2020 [67] DetINDRO, kernel-based clustering single-cell Char et al., 2020 [71] Zhou et al., 2020 [72] Biomarker identification ECMarker, Boltzman machines bulk Kong et al., 2020 [72] Zhou et al., 2020 [73] Prediction of		Double Radial Basis Function Remeis	DUIK	Liu et al., 2018 [55]
transformation GSBCA, Cene Set Enrichment Class Analysis Equal-width, equal-frequency binning, k-means clustering bulk Laura et al., 2020 [57] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talwar et al., 2021 [59] Data reconstruction: the sparsity issue Decyling undernooder single-cell Faivar et al., 2021 [61] Non-negative matrix factorization bulk Wang et al., 2020 [23] Autoencoder Assessing inter-tumor heterogeneity: Random forest bulk Alaraz et al., 2020 [76] CuP-ALDy, convolutional neural network bulk Caccianelli et al., 2020 [76] CuP-ALDy, convolutional neural network Delining cell types and clones Graph-based clustering single-cell Carcianelli et al., 2020 [70] Defining cell types and clones Graph-based clustering single-cell Zar et al., 2020 [71] Biomarker identification ECMarker, Boltzman machines bulk Kong et al., 2020 [71] Defining cell types and clones Graph-based clustering single-cell Zar et al., 2020 [71] Defining cell types and clones Graph-based clustering single-cell Zar et al., 2020 [72] Defining cell t	Data distribution	Rank-based normalization	bulk	Barbie et al., 2009 [56]
Endetterm Equal-wridth, equal-prequency binning. kmeans clustering bulk Jung et al., 2015 [58] Data reconstruction: the sparsity issue AutoImpute, autoencoder single-cell Talwar et al., 2019 [60] Non-negative matrix factorization bulk Wang et al., 2019 [61] Enastan et al., 2019 [61] Assessing inter-tumor heterogeneity: Random forest bulk Value et al., 2020 [20] Assessing inter-tumor heterogeneity: Naïve Bayes classifier bulk Zharg et al., 2020 [20] Cassification of cancer Partition around medioids bulk Zharg et al., 2020 [70] CuP-AI-Dx, convolutional neural network bulk Chen et al., 2020 [66] CuP-AI-Dx, convolutional neural network Defining cell types and clones Graph-based clustering single-cell Exar et al., 2020 [67] DENDRO, kernel-based clustering single-cell Chen et al., 2020 [21] Zhou et al., 2020 [22] Denseus clustering single-cell Chou et al., 2020 [21] Zhou et al., 2020 [22] Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21] Defining cell types and clones Graph-based clustering	transformation	GSECA, Gene Set Enrichment Class Analysi	s bulk	Lauria et al., 2020 [57]
Data reconstruction: the sparsity issue AutoImpute, autoencoder DCA, autoencoder single-cell single-cell Talwar et al., 2019 [69] Eraslan et al., 2019 [60] Assessing inter-tumor heterogeneity: classification of cancer subtypes Non-negative matrix factorization Topic modeling Random forest bulk Valle et al., 2020 [20] Assessing inter-tumor heterogeneity: classification of cancer subtypes Native Bayes classifier Multicalse logistic regression DeepType, neural network DeepCC, neural network DeepCC, neural network bulk Cascinnelit et al., 2020 [46] Defining cell types and clones CuP-Al-Dx, convolutional neural network bulk bulk Cas et al., 2019 [18] Defining cell types and clones Consensus clustering DENDRO, kernel-based clustering SIMMS, Interaction network and ridge regression bulk single-cell Zhar et al., 2020 [21] Chone et al., 2020 [22] Biomarker identification ECMArker, Boltzman machines bulk bulk Kong et al., 2020 [22] Proportional Hazards bulk Kong et al., 2020 [21] Yau all [27] Biomarker identification ECMArker, Boltzman machines bulk bulk In et al., 2020 [21] Proportional Hazards bulk Chone et al., 2020 [21] Yau all [27] Proportional Hazards bulk Katzman et al., 2018 [30] Proportional Hazards <td>unisionnution</td> <td>Equal-width, equal-frequency binning, k-means clustering</td> <td>bulk</td> <td>Jung et al., 2015 [58]</td>	unisionnution	Equal-width, equal-frequency binning, k-means clustering	bulk	Jung et al., 2015 [58]
Detail reconstruction: the sparsity issue DeepImpute, autoencoder single-cell Arisdakessian et al., 2019 [61] sparsity issue DCA, autoencoder single-cell Eraslan et al., 2019 [61] Assessing inter-tumor heterogeneity: classification of cancer subtypes Random forest bulk Value et al., 2020 [21] Classification of cancer subtypes Non-negative matrix factorization heterogeneity: classification of cancer Non-negative matrix factorization perpipe, neural network bulk Zharag et al., 2020 [64] Defining cell types CUP-Al-Dy, convolutional neural network bulk Classification of cancer Single-cell Lar et al., 2020 [66] Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21] Lar et al., 2020 [22] Defining cell types and clones Consensus clustering single-cell Chen et al., 2020 [21] Zhou et al., 2020 [21] Interaction network and ridge regression bulk Kong et al., 2020 [22] Zhou et al., 2020 [21] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [21] Diffics on metvork and cox Proportional Hazards bulk Katzman et al., 2019 [33] Diffusion map, s	Data reconstruction: the	AutoImpute, autoencoder	single-cell	Talwar et al., 2018 [59]
sparsity issue DCA, autoencoder single-cell Erastan et al. 2019 [61] Non-negative matrix factorization bulk Wang et al. 2017 [62] Topic modeling bulk Valle et al. 2020 [23] Assessing inter-tumor Random forest bulk Altaraz et al. 2017 [63] Call (2017) [64] classification of cancer Native Bayes classifier bulk Partition around medoids bulk Chang et al. 2020 [17] classification of cancer DeepType, neural network bulk Chen et al. 2020 [17] DeepCC, neural network bulk Chen et al. 2020 [17] DeepCC, neural network bulk Chen et al. 2020 [17] DeepCC, neural network bulk Chen et al. 2020 [17] Defining cell types and clones Graph-based clustering single-cell Izar et al. 2020 [21] Chen et al. 2020 [22] Cones Consensus clustering single-cell Garofano et al. 2020 [22] Chen et al. 2020 [23] Interaction network and ridge regression bulk Kong et al. 2020 [24] Kong et al. 2020 [26] SIMMS, Interaction network and Cox bulk Jung et al. 2020 [26] SIMMS, Interaction network and Cox	Data reconstruction: the	DeepImpute, autoencoder	single-cell	Arisdakessian et al., 2019 [60]
Non-negative matrix factorization bulk Wang et al. 2017 [62] Assessing inter-tumor heterogeneity: classification of cancer subtypes Random forest bulk Valle et al., 2020 [64] Classification of cancer subtypes Partition around medoids bulk Zharg et al., 2020 [64] Classification of cancer subtypes Non-negative matrix factorization bulk Cascianelli et al., 2020 [67] Despitype, neural network bulk Cascianelli et al., 2020 [66] ClP-Al-D2, convolutional neural network bulk Cascianelli et al., 2020 [21] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [21] Zhou et al., 2020 [21] Defining cell types and clones Consensus clustering single-cell Zar et al., 2020 [21] Zhou et al., 2020 [21] Defining cell types and clones Consensus clustering single-cell Zar et al., 2020 [21] Zhou et al., 2020 [21] Defining cell types and clones Graph-based clustering single-cell Zar et al., 2020 [21] Zhou et al., 2020 [22] Interaction network and Cox bulk Kong et al., 2020 [22] Zhou et al., 2020 [23] Biomarker identification ECMar	sparsity issue	DCA, autoencoder	single-cell	Eraslan et al., 2019 [61]
Assessing inter-tumor heterogeneity: classification of cancer subtypes Topic modeling Random forest Partition around medoids bulk bulk Alcaraz et al., 2017 [63] Zhang et al., 2020 [64] Partition around medoids bulk Value et al., 2015 [65] Partition around medoids bulk Value et al., 2017 [63] Zhang et al., 2020 [74] Cascianelli et al., 2020 [74] Deep Type, neural network bulk bulk Chacara et al., 2020 [74] Cascianelli et al., 2020 [74] Deep Type, neural network bulk Cascianelli et al., 2020 [76] Cascianelli et al., 2020 [76] Deep Type, neural network bulk Cascianelli et al., 2020 [76] CuP-AI-Dx, convolutional neural network bulk Cascianelli et al., 2020 [76] Defining cell types and clones Consensus clustering single-cell Cara et al., 2020 [76] Zhou et al., 2020 [76] Interaction network and ridge regression biomarker identification SIMMS, Interaction network and Cox Proportional Hazards bulk Kong et al., 2020 [76] Biomarker identification ECMarker, Boltzman machines bulk bulk Tin et al., 2020 [72] Sigle-cell Wu et al., 2020 [72] Diffusion map. shared nearest-neighbor survival Diffusion map. shared nearest-neighbor proportional Hazards single-cell Wu et al., 2020 [72] Prediction of patient survival Cox-nnet, neural network and Cox Proportional		Non-negative matrix factorization	bulk	Wang et al., 2017 [62]
Assessing inter-tumor heterogeneity: classification of cancer subtypes Random forest Partition around medoids bulk bulk Alcaraz et al., 2017 [63] Paquet et al., 2020 [64] Cassification of cancer subtypes Naive Bayes classifier Multiclass logistic regression bulk bulk Cascianelli et al., 2020 [67] DeepType, neural network clones DeepType, neural network bulk bulk Chen et al., 2020 [67] Defining cell types and clones Graph-based clustering DENDRO, kernel-based clustering Single-cell single-cell Chon et al., 2020 [21] Demarker identification Interaction network and ridge regression SIMMS, Interaction network and Cox Proportional Hazards bulk Jin et al., 2020 [21] Biomarker identification EGMarker, Boltzman machines bulk bulk Jin et al., 2020 [26] DRECC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machines bulk Van get al., 2020 [73] Prediction of patient survival Cox-met, neural network and Cox Proportional Hazards bulk Ching et al., 2020 [73] Assessment of tumor microenvironment CEBEFSORT, support vector regression single-cell/bulk single-cell/bulk Newman et al., 2018 [31] Assessment of tumor microenvironment CEBEFSORT, support vector regression		Topic modeling	bulk	Valle et al., 2020 [20]
Assessing inter-tumor heterogeneity: classification of cancer subtypes Partition around medoids bulk Zhang et al., 2020 [64] Multiclass logistic regression bulk Paquet et al., 2017 [65] Cascianelli et al., 2020 [17] DeepType, neural network bulk Chen et al., 2020 [66] Cascianelli et al., 2020 [67] DeepCC, neural network bulk Cascianelli et al., 2020 [67] Cascianelli et al., 2020 [66] Defining cell types and clones Craph-based clustering single-cell Lar et al., 2020 [66] DENDRO, kernel-based clustering single-cell Car et al., 2020 [70] Chen et al., 2020 [70] Interaction network and ridge regression bulk Kong et al., 2020 [71] Chon et al., 2020 [72] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [72] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [72] Diffusion map, shared nearest-neighbor single-cell Chen et al., 2020 [73] Cox-net, neural network and Cox proportional Hazards bulk Ching et al., 2020 [73] DeepSur, neural network and Cox Proportional Hazards bulk Chen et al., 2018 [30] Prediction of patient		Random forest	bulk	Alcaraz et al., 2017 [63]
neterogeneity: Naïve Bayes classifier bulk Paquet et al., 2015 [45] classification of cancer subtypes Multiclass logistic regression bulk Cascianelli et al., 2020 [17] DeepType, neural network bulk Chen et al., 2020 [66] CUP-AI-Dx, convolutional neural network bulk Cas et al., 2019 [66] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [21], Zhou et al., 2020 [22] Defining cell types and clones Graph-based clustering single-cell Garofano et al., 2020 [22] Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21] Interaction network and ridge regression bulk Kong et al., 2020 [26] Chen et al., 2020 [26] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [26] Single-cell Wu et al., 2020 [26] Biomarker identification ECMarker, Boltzman machines bulk ulk Van IJzendoorn et al., 2020 [26] Single-cell Wu et al., 2020 [26] Single-cell Cheng et al., 2020 [26] Cheng et al., 2020 [26] Cheng et al., 2020 [26] Single-cell Wu et al., 2020 [26] Single-cell Single-cell Single-cell Single-cell <td>Assessing inter-tumor</td> <td>Partition around medoids</td> <td>bulk</td> <td>Zhang et al., 2020 [64]</td>	Assessing inter-tumor	Partition around medoids	bulk	Zhang et al., 2020 [64]
classification of cancer subtypes Multiclass logistic regression Deep Type, neural network bulk Cascianelli et al., 2020 [17] CUP-AI-Dx, convolutional neural network bulk Chen et al., 2020 [67] CUP-AI-Dx, convolutional neural network bulk Cascianelli et al., 2020 [67] Defining cell types and clones Graph-based clustering single-cell Lar et al., 2020 [22] Consensus clustering single-cell Garofano et al., 2020 [72] Zhou et al., 2020 [72] Defining cell types and clones Consensus clustering single-cell Zarofano et al., 2020 [72] Density Custering single-cell Zarofano et al., 2020 [72] Zhou et al., 2020 [72] Interaction network and ridge regression bulk Kong et al., 2020 [72] Zhou et al., 2020 [72] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [72] Yulp 13] DRjCC, non-negative matrix factorization maximum relevance minimum redundancy, support vector machine single-cell Chen et al., 2020 [72] Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazards bulk Ching et al., 2020 [73] Prediction of patient survival DeepSurv, neural network and Cox Proportional Hazards bulk Katzman et al., 201	heterogeneity:	Naïve Bayes classifier	bulk	Paquet et al., 2015 [65]
subtypes DeepType, neural network bulk Chen et al., 2020 [67] CUP-AI-Dx, convolutional neural network bulk Chao et al., 2020 [67] DeepCC, neural network bulk Gao et al., 2020 [68] Defining cell types and clones Graph-based clustering single-cell Izar et al., 2020 [21] Defining cell types and clones Consensus clustering single-cell Chen et al., 2020 [22] DetNDRO, kernel-based clustering single-cell Chen et al., 2020 [22] Chou et al., 2020 [22] Interaction network and ridge regression bulk Kong et al., 2020 [22] Stowe et al., 2020 [22] Biomarker identification ECMarker, Boltzman machines bulk Kong et al., 2020 [72] Diffusion map, shared nearest-neighbor single-cell Wu et al., 2020 [72] Diffusion map, shared nearest-neighbor single-cell Zhang et al., 2020 [73] Cox-nnet, neural network and Cox bulk Cheng et al., 2020 [73] Prediction of patient survival DeepSurv, neural network and Cox bulk Ching et al., 2020 [29] Assessment of tumor microenvironment CCX-nnet, neural network and Cox bulk Katzman et al.,	classification of cancer	Multiclass logistic regression	bulk	Cascianelli et al., 2020 [17]
CUP-AI-Dx, convolutional neural network bulk Zhao et al., 2020 [67] Defining cell types and clones Density clustering single-cell Lar et al., 2020 [63] Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21], Zhou et al., 2020 [22] Defining cell types and clones Graph-based clustering single-cell Gar et al., 2020 [21], Zhou et al., 2020 [22] Density Consensus clustering single-cell Chen et al., 2020 [26] Chen et al., 2020 [26] Interaction network and ridge regression bulk Kong et al., 2020 [26] SIMMS, Interaction network and Cox Proportional Hazards bulk Jin et al., 2020 [26] Biomarker identification ECMarker, Boltzman machines bulk yin et al., 2020 [28] single-cell Wu et al., 2020 [28] Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazards single-cell Wu et al., 2020 [72] Single-cell Prediction of patient survival DeepSurv, neural network and Cox Proportional Hazards bulk Katzman et al., 2018 [30] Assessment of tumor microenvironment EPIC, least square regression Single-cell bulk Que et al., 2020 [29] Assessment of tumor microen	subtypes	DeepType, neural network	bulk	Chen et al., 2020 [66]
DeepCC, neural networkbulkGao et al., 2019 [18]Defining cell types and clonesGraph-based clusteringsingle-cellIzar et al., 2020 [68]Observer ChonesConsensus clusteringsingle-cellChen et al., 2020 [21]DENDRO, kernel-based clusteringsingle-cellGarofano et al., 2020 [72]DENDRO, kernel-based clusteringsingle-cellChon et al., 2020 [72]DENDRO, kernel-based clusteringsingle-cellChon et al., 2020 [72]DENDRO, kernel-based clusteringbulkKong et al., 2018 [27]Proportional HazardsbulkJin et al., 2020 [72]Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [72]DDRO, Cc, non-negative matrix factorizationsingle-cellWu et al., 2020 [72]Maximum relevance minimum redundancy, Support vector machinesingle-cellCheng et al., 2020 [72]Defiction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [72]Cox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [73]Assessment of tumor microenvironmentCCH, non-linear regression xCell, non-linear regression single-cell/bulkNewman et al., 2019 [34]Assessment of tumor microenvironmentNeopepsee, Naïve Bayes, random forest, support vector regression single-cell/bulkNewman et al., 2019 [74]Assessment of tumor microenvironmentNeopepsee, Naïve Bayes, random forest, support vector megnesionbulkNewman et al., 2017 [74]Assessment of tumor <br< td=""><td></td><td>CUP-AI-Dx, convolutional neural network</td><td>bulk</td><td>Zhao et al., 2020 [67]</td></br<>		CUP-AI-Dx, convolutional neural network	bulk	Zhao et al., 2020 [67]
Defining cell types and clonesDensity clusteringsingle-cellIzar et al., 2020 [68] Chen et al., 2020 [22] Garofano et al., 2020 [22] Garofano et al., 2020 [22]DENDRO, kernel-based clustering DENDRO, kernel-based clustering SIMMS, Interaction network and ridge regression SIMMS, Interaction network and Cox Proportional HazardsbulkKong et al., 2020 [22] Garofano et al., 2020 [26]Biomarker identificationECMarker, Boltzman machines Integration of ML techniquesbulkHaider et al., 2020 [71] Van IJzendoorn et al., 2019 [33]Biomarker identificationECMarker, Boltzman machines Integration of ML techniquesbulkVan IJzendoorn et al., 2019 [33]DRJCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machinesingle-cellCheng et al., 2020 [72]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [73]Cox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [30]Prediction of patient survivalDreportional Hazards Proportional HazardsbulkKatzman et al., 2018 [31]Assessment of tumor microenvironmentCIBERSORT, support vector regression Graph-based clustering K-means clusteringsingle-cell/bulk single-cellNewman et al., 2015 [24] Racle et al., 2017 [75] K-means clustering K-means clustering Single-cellbulkKin et al., 2018 [77]Ide		DeepCC, neural network	bulk	Gao et al., 2019 [18]
Defining cell types and clones Graph-based clustering single-cell Chen et al., 2020 [21], Zhou et al., 2020 [22] Consensus clustering single-cell Single-cell Garofano et al., 2021 [69] DENDRO, kernel-based clustering single-cell Zhou et al., 2020 [22] Interaction network and ridge regression bulk Kong et al., 2020 [70] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [71] Integration of ML techniques bulk Van IJzendoorn et al., 2019 [33] DRJCC, non-negative matrix factorization single-cell Wu et al., 2020 [72] Support vector machine Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazards single-cell Zhang et al., 2020 [73] Prediction of patient survival Cox-nnet, neural network and Cox Proportional Hazards bulk Ching et al., 2018 [30] Preoportional Hazards bulk Katzman et al., 2018 [31] Proportional Hazards Neural network and Cox Proportional Hazards bulk Qiu et al., 2020 [22] CIBERSORTx, support vector regression microenvironment Single-cell/bulk Racle et al., 2017 [74] Assessment of tumor microenvironment Cell, non-linear regression Neural network and Cox Proportional Hazard		Density clustering	single-cell	Izar et al., 2020 [68]
Consensus clusteringsingle-cellGarofano et al., 2021 [69]DENDRO, kernel-based clusteringsingle-cellZhou et al., 2020 [70]Interaction network and ridge regressionbulkKong et al., 2020 [26]SIMMS, Interaction network and CoxProportional HazardsbulkHaider et al., 2018 [27]Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [71]Integration of ML techniquesbulkJin et al., 2020 [73]DRjCC, non-negative matrix factorizationsingle-cellWu et al., 2020 [72]Support vector machineDiffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellCheng et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [30]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [73]Cox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [22]Assessment of tumor microenvironmentCIBERSORTx, support vector regression xCell, non-linear regressionsingle-cell/bulk single-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74] Racle et al., 2017 [74] Racle et al., 2017 [74] Racle et al., 2017 [75]Identification of necepitopesNeopepsee, Naive Bayes, random forest, support vector machinebulkKim et al., 2018 [77]Neopepsee, Naive Bayes, random forest, neoepitopesNeuker et al., 2018 [77]bulkKim et al., 2018 [77]	Defining cell types and clones	Graph-based clustering	single-cell	Chen et al., 2020 [21], Zhou et al., 2020 [22]
DENDRO, kernel-based clusteringsingle-cellZhou et al., 2020 [70]Interaction network and ridge regressionbulkKong et al., 2020 [26]SIMMS, Interaction network and Cox Proportional HazardsbulkHaider et al., 2018 [27]Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [71]Integration of ML techniquesbulkVan IJzendoorn et al., 2019 [33]DRJCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machinesingle-cellCheng et al., 2020 [72]Drediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [73]Cox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [73]Cox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [72]Assessment of tumor microenvironmentEIPIC, least square regression Single-cell/bulkbulkNeuman et al., 2018 [31]Assessment of tumor microenvironmentNeopepsee, Naïve Bayes, random forest, support vector machinesingle-cell/bulk single-cell/bulkNeuman et al., 2017 [24]Assessment of tumor necopitopesNeopepsee, Naïve Bayes, random forest, support vector machinesingle-cell/bulk single-cell/bulkKin et al., 2018 [77]Identification of necopitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKin et al., 2018 [77] </td <td>ciones</td> <td>Consensus clustering</td> <td>single-cell</td> <td>Garofano et al., 2021 [69]</td>	ciones	Consensus clustering	single-cell	Garofano et al., 2021 [69]
Interaction network and ridge regressionbulkKong et al., 2020 [26]Biomarker identificationSIMMS, Interaction network and Cox Proportional HazardsbulkHaider et al., 2018 [27]Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [71]Integration of ML techniquesbulkvan IJzendoorn et al., 2019 [33]DRJCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machinesingle-cellWu et al., 2020 [72]Orgen constrainedDiffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellZhang et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]Assessment of tumor microenvironmentEIBERSORTx, support vector regression CIBERSORTx, support vector regression Caraph-based clustering K-means clusteringsingle-cell/bulk single-cell/bulkNewman et al., 2017 [24]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinesingle-cell/bulk single-cell/bulkKim et al., 2020 [75]MARIA, multimodal recurrent neurol networkNewerent et alver single-cell/bulkKim et al., 2018 [77]		DENDRO, kernel-based clustering	single-cell	Zhou et al., 2020 [70]
Biomarker identification SIMMS, Interaction network and Cox Proportional Hazards bulk Haider et al., 2018 [27] Biomarker identification ECMarker, Boltzman machines bulk Jin et al., 2020 [71] Integration of ML techniques bulk van IJzendoorn et al., 2019 [33] DRjCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machine single-cell Wu et al., 2020 [72] Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazards single-cell Zhang et al., 2018 [30] Prediction of patient survival Cox-nnet, neural network and Cox Proportional Hazards bulk Katzman et al., 2018 [30] Prediction of patient survival DeepSurv, neural network and Cox Proportional Hazards bulk Katzman et al., 2020 [72] Assessment of tumor microenvironment CIBERSORTx, support vector regression microenvironment single-cell/bulk Newman et al., 2015 [24] Assessment of tumor necoepitopes Neopepsee, Naïve Bayes, random forest, support vector machine bulk Kim et al., 2020 [75] Identification of necoepitopes Neopepsee, Naïve Bayes, random forest, neural network bulk Kim et al., 2018 [77] Identification of necoepitopes Newpepsee, Naïve Bayes, random forest, support vector machine bulk Kim et al., 2018 [7		Interaction network and ridge regression	bulk	Kong et al., 2020 [26]
Proportional HazardsbulkHaider et al., 2018 [27]Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [71]Integration of ML techniquesbulkvan IJzendoorn et al., 2019 [33]DRjCC, non-negative matrix factorizationsingle-cellWu et al., 2020 [72]Diffusion map, shared nearest-neighborsingle-cellCheng et al., 2020 [73]Cox-nnet, neural network and Coxproportional Hazardssingle-cellZhang et al., 2018 [30]Prediction of patientSurvivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [30]Prediction of patientSurvivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]Assessment of tumor microenvironmentEPIC, least square regression xCell, non-linear regression Single-cell/bulkNewman et al., 2017 [74]Asseessment of tumor necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinesingle-cell/bulk bulkKim et al., 2020 [75]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]		SIMMS, Interaction network and Cox		
Biomarker identificationECMarker, Boltzman machinesbulkJin et al., 2020 [71]Integration of ML techniquesbulkvan IJzendoorn et al., 2019 [33]DRjCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machinesingle-cellWu et al., 2020 [72]Support vector machineDiffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellZhang et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]Assessment of tumor microenvironmentCIBERSORTx, support vector regression EPIC, least square regression Graph-based clustering single-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74] Racle et al., 2017 [74] Racle et al., 2017 [75]Identification of neoepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkKim et al., 2018 [77]		Proportional Hazards	bulk	Haider et al., 2018 [27]
Integration of ML techniquesbulkvan IJzendoorn et al., 2019 [33]DRjCC, non-negative matrix factorization maximum relevance minimum redundarcy, Support vector machinesingle-cellWu et al., 2020 [72]Support vector machinecheng et al., 2020 [73]single-cellCheng et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]Proportional HazardsDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]Proportional HazardsDeepSurv, neural network and Cox Proportional HazardsbulkQiu et al., 2020 [32]Proportional HazardsSingle-cell/bulkRacle et al., 2015 [24]Assessment of tumor microenvironmentEPIC, least square regression Craph-based clustering Single-cell/bulkNewman et al., 2017 [74]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machine mervirebulkKim et al., 2018 [77]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machine neural networkbulkChen et al., 2018 [77]	Biomarker identification	ECMarker, Boltzman machines	bulk	Jin et al., 2020 [71]
DRjCC, non-negative matrix factorization maximum relevance minimum redundancy, Support vector machine Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellWu et al., 2020 [72]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [30]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]AECOX, autoencoder and Cox Proportional HazardsbulkKatzman et al., 2020 [29]CIBERSORTx, support vector regression microenvironmentSingle-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74] K-means clusteringAssessment of tumor microenvironmentNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]Identification of neoepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]		Integration of ML techniques	bulk	van IJzendoorn et al., 2019 [33]
maximum relevance minimum redundancy, Support vector machinesingle-cellCheng et al., 2020 [72]Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellZhang et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]Assessment of tumor microenvironmentCIBERSORTx, support vector regression Single-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74] Racle et al., 2017 [74] Aran et al., 2017 [25] Graph-based clustering K-means clusteringNewman et al., 2017 [25] Single-cell/bulkNew et al., 2020 [75] Racle et al., 2020 [75] Zhu et al., 2020 [75] Zhu et al., 2018 [77]Identification of neoepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]Neopepsee, Naïve Bayes, random forest, neural networkbulkChen et al., 2018 [77]		DRjCC, non-negative matrix factorization	single-cell	Wu et al., 2020 [28]
Support vector machineBurgle ChiCharge ChiCharge ChiDiffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellZhang et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]DeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]CIBERSORTx, support vector regression microenvironmentSingle-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74] xCell, non-linear regression Graph-based clustering K-means clusteringNewman et al., 2017 [74] Single-cell/bulkIdentification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]		maximum relevance minimum redundancy	single-cell	Cheng et al., 2020 [72]
Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazardssingle-cellZhang et al., 2020 [73]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]Assessment of tumor microenvironmentCIBERSORTx, support vector regression X Cell, non-linear regression Graph-based clusteringsingle-cell/bulk single-cellNewman et al., 2017 [74] Racle et al., 2017 [74] Xran et al., 2020 [75] K-means clusteringIdentification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machine MARIA, multimodal recurrent neural networkbulkKim et al., 2018 [77]		Support vector machine	blight ten	
Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkChing et al., 2018 [30]Prediction of patient survivalCox-nnet, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]DeepSurv, neural network and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkKatzman et al., 2020 [32]Assessment of tumor microenvironmentCIBERSORTx, support vector regression Science Single-cell/bulkbulkNewman et al., 2015 [24]Assessment of tumor microenvironmentEPIC, least square regression Graph-based clustering K-means clusteringsingle-cell/bulk single-cellNewman et al., 2017 [74]Identification of necoepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2020 [75]MARIA, multimodal recurrent neural networkNew proport vector machine machinebulkKim et al., 2018 [77]		Diffusion map, shared nearest-neighbor clustering and Cox Proportional Hazards	single-cell	Zhang et al., 2020 [73]
Prediction of patient survivalProportional Hazards DeepSurv, neural network and Cox Proportional Hazards AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional Hazards, Neural network and Cox Proportional Hazards SURV Neural network and Cox Proportional Hazards, Neural network and Cox Proportional Hazards SURV Neural network and Cox Proportional Hazards SURV Neural network and Cox Proportional Hazards SURV Neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]Assessment of tumor microenvironmentCIBERSORTx, support vector regression EPIC, least square regression Graph-based clustering Graph-based clustering Single-cellNewman et al., 2017 [74] Racle et al., 2017 [74] Racle et al., 2017 [25] Chen et al., 2020 [75] K-means clustering Single-cell/bulkNewman et al., 2017 [74] Racle et al., 2020 [75] Zhu et al., 2020 [75] K-means clusteringIdentification of neoepitopesNeopepsee, Naïve Bayes, random forest, support vector machine MARIA, multimodal recurrent neural networkbulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]	Prediction of patient survival	Cox-nnet, neural network and Cox		
Prediction of patient survivalDeepSurv, neural network and Cox Proportional HazardsbulkKatzman et al., 2018 [31]Matter SurvivalDeepSurv, neural network and Cox Proportional Hazards, 		Proportional Hazards	bulk	Ching et al., 2018 [30]
SurvivalProportional HazardsFuturmative tail, 2010 [01]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkHuang et al., 2020 [32]AECOX, autoencoder and Cox Proportional Hazards, Neural network and Cox Proportional HazardsbulkQiu et al., 2020 [29]Assessment of tumor microenvironmentCIBERSORTx, support vector regression Sciencesingle-cell/bulkNewman et al., 2015 [24]Assessment of tumor microenvironmentEPIC, least square regression Sciencesingle-cell/bulkRacle et al., 2017 [74]Assessment of tumor microenvironmentK-means clustering Single-cellsingle-cellChen et al., 2020 [75]Identification of neoepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]		DeepSurv, neural network and Cox	bulk	Katzman et al., 2018 [31]
AECOX, autoencoder and CoxbulkHuang et al., 2020 [32]Proportional Hazards,Neural network and CoxbulkQiu et al., 2020 [29]Proportional HazardsbulkQiu et al., 2020 [29]Proportional HazardsbulkNewman et al., 2015 [24]Assessment of tumor microenvironmentEPIC, least square regressionsingle-cell/bulkCIBERSORTx, support vector regressionbulkAran et al., 2017 [74]CIBERSORTx, cell, non-linear regressionbulkAran et al., 2017 [25]Graph-based clusteringsingle-cell/bulkChen et al., 2020 [75]K-means clusteringsingle-cell/bulkZhu et al., 2021 [76]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]		Proportional Hazards	buik	Kaizman et al., 2010 [31]
Assessment of tumor microenvironmentNeural network and Cox Proportional HazardsbulkQiu et al., 2020 [29]Assessment of tumor microenvironmentCIBERSORTx, support vector regression EPIC, least square regression Graph-based clusteringsingle-cell/bulk single-cellNewman et al., 2015 [24] Racle et al., 2017 [74] Racle et al., 2017 [74] Chen et al., 2020 [75] Zhu et al., 2020 [75]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]Chen et al., 2019 [78]		AECOX, autoencoder and Cox	bulk	Huang et al., 2020 [32]
Assessment of tumor microenvironmentCIBERSORTx, support vector regression EPIC, least square regression Graph-based clusteringsingle-cell/bulk single-cell/bulkNewman et al., 2015 [24] Racle et al., 2017 [74]Assessment of tumor microenvironmentEPIC, least square regression Scell, non-linear regressionsingle-cell/bulk bulkRacle et al., 2017 [74] Chen et al., 2017 [25]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkMaria networkbulkChen et al., 2019 [78]		Noural notwork and Cox		
Assessment of tumor microenvironmentCIBERSORTx, support vector regression EPIC, least square regression (regression)single-cell/bulk single-cell/bulk bulkNewman et al., 2015 [24] Racle et al., 2017 [74] (Racle et al., 2017 [74] (Racle et al., 2017 [25])Assessment of tumor microenvironmentCIBERSORTx, support vector regression (regression)single-cell/bulk bulkRacle et al., 2017 [74] (Racle et al., 2017 [25])Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]	Assessment of tumor	Proportional Hazards	bulk	Qiu et al., 2020 [29]
Assessment of tumor microenvironment EPIC, least square regression single-cell/bulk Racle et al., 2017 [74] Assessment of tumor microenvironment xCell, non-linear regression bulk Aran et al., 2017 [25] Graph-based clustering single-cell Chen et al., 2020 [75] K-means clustering single-cell/bulk Zhu et al., 2021 [76] Identification of necepitopes Neopepsee, Naïve Bayes, random forest, support vector machine bulk Kim et al., 2018 [77] MARIA, multimodal recurrent neural network bulk Chen et al., 2019 [78]		CIBERSORTx, support vector regression	single-cell/bulk	Newman et al., 2015 [24]
Assessment of tunor microenvironmentxCell, non-linear regression Graph-based clustering K-means clusteringbulkAran et al., 2017 [25] Chen et al., 2020 [75] Zhu et al., 2021 [76]Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]		EPIC, least square regression	single-cell/bulk	Racle et al., 2017 [74]
Intercent formitting Graph-based clustering single-cell Chen et al., 2020 [75] K-means clustering single-cell/bulk Zhu et al., 2021 [76] Identification of necepitopes Neopepsee, Naïve Bayes, random forest, support vector machine bulk Kim et al., 2018 [77] MARIA, multimodal recurrent bulk Chen et al., 2019 [78]	microapyiropmont	xCell, non-linear regression	bulk	Aran et al., 2017 [25]
K-means clustering single-cell/bulk Zhu et al., 2021 [76] Identification of necepitopes Neopepsee, Naïve Bayes, random forest, support vector machine bulk Kim et al., 2018 [77] MARIA, multimodal recurrent neural network bulk Chen et al., 2019 [78]	nucroenvirorunent	Graph-based clustering	single-cell	Chen et al., 2020 [75]
Identification of necepitopesNeopepsee, Naïve Bayes, random forest, support vector machinebulkKim et al., 2018 [77]MARIA, multimodal recurrent neural networkbulkChen et al., 2019 [78]		K-means clustering	single-cell/bulk	Zhu et al., 2021 [76]
neoepitopes support vector machine MARIA, multimodal recurrent neural network bulk Chen et al., 2019 [78]	Identification of	Neopepsee, Naïve Bayes, random forest,	bulk	Kim et al., 2018 [77]
neural network bulk Chen et al., 2019 [78]	neoepitopes	support vector machine		· · · ·
		neural network	bulk	Chen et al., 2019 [78]

Figure 3. Graphical summary of AI approaches (columns) applied to solve tasks (rows) presented in this review. Cells show the RNA-seq data type used for the analysis. The "immunotherapy" task includes assessment of tumor microenvironment and identification of neoepitopes.

1st extract

Despite the results achieved so far, the application of <u>AI to cancer transcriptome Big</u> <u>Data for valuable precision oncology is still limited</u>. The <u>complexity</u> of <u>cancer heterogeneity</u> remains the <u>major challenge</u> to disentangle.

2nd extract

On the one hand, <u>AI represents the most pow-</u> erful tool to extract the real biological information from large-scale transcriptomic datasets. As national and international sequencing consortia <u>generate sequencing data</u>, the ability of DL algorithms to capture the <u>hidden relationships</u> responsible for a phenotype without requiring a human supervision will become pivotal for our understanding of diseases and <u>guide personalized therapeutic interventions</u>. On the other hand, <u>AI data mining</u> <u>poses several challenges</u>. Harnessing Big Data carries with it the 'curse of dimensionality' phenomenon, or the need of more data when information increases [125,126]. When dimensionality grows, data becomes sparse. Any sample is likely to be more separated from its neighbors at the increase of the space dimensionality. Hence, having data fully representative of the heterogeneity of a phenotype will become more and more complicated as the variables of interest will increase. This holds <u>particularly true for cancer types that</u> are rare and heterogeneous. Dimensionality reduction methods are a solution to mitigate the curse of dimensionality. Similarly, <u>data discretization</u> approaches can help to reduce dimensionality suprepring the paradigm of "less is more".

3rd extract

Despite being powerful tools, AI approaches require tailor-made designs to achieve good performances and biologically relevant results. The "black-box" nature of learning algorithms needs to be fully exploited to reach a comprehensive understanding of the cancer phenotype of interest. Improving the interpretability of results of AI models remains an important challenge [127], especially when selecting for therapeutic treatments.

4th extract

However, the integration of prior biological knowledge into the algorithms can guide toward this direction. <u>Combining data from multi</u> omics approaches will provide a deeper understanding of cancer heterogeneity.

5th extract

However,

new AI methods will be required to face the resulting curse of dimensionality. Of note, part of cancer transcriptomic data originates from preclinical research employing cell lines and mouse models. Despite the undeniable value of these data, molecular differences between these models and patient tumors call for caution in extending results to the human system [128,129]. Therefore, approaches aiming at delineating the similarities and differences between preclinical and clinical transcriptomes are required for an effective application of AI to improve the patient's quality of life [130,131].

6th extract

The demand of AI in precision oncology will go hand in hand with the need of doctors and experts that will be able to translate results into real precision therapeutic decisions and participate actively in the development of learning strategies. In this light, a precision <u>AI-driven oncology</u> will become effectively available on demand.

Paper structure

- 1. Introduction
- 2. AI in the Era of Transcriptomic Big Data
- 3. Managing the Heterogeneity of Cancer Transcriptomes
 - 3.1 Batch-Correction of Technical Heterogeneity
 - 3.2 Dimensionality Reduction Approaches

3.2.1 Feature Extraction

3.2.2 Feature Selection

- 3.3 Data Distribution Transformation
- 3.4 Data Reconstruction: The Sparsity Issue
- 4. AI Mining of Cancer Transcriptomes
 - 4.1 Assessing Inter-Tumor Heterogeneity: Classification

of Cancer Subtypes

- 4.2 Deciphering Intra-Tumor Heterogeneity
 - 4.2.1 Defining Cell Types and Clones
 - 4.2.2 Assessment of TME (i.e. Tumor

MicroEnvironment)

- 4.3 Biomarker Identification
- 4.4 Prediction of Patient Survival
- 4.5 Identification of Neoepitopes
- 5. Conclusions

2. Al in the era of transcriptomic big data

This is a general chapter, linked to figure 1 and 2, in which the relation between AI and Big Data in transcriptomics is explained.

What does we mean with "Big Data"?

Al is fundamental for the processing of Big Data

DI MILANO

High Volume → large file <u>sizes</u> with lots of observations

Wide Variety → lots of different <u>types</u>

High Velocity→ accumulating at a high <u>rate</u>

Compromised Veracity \rightarrow variable <u>quality</u> that must be dealt otherwise downstream analyses will be compromised.

Big Data in biology

C.G.B.

DEGLI STUDI DI MILANO As a review is nothing without its citations, in each chapter from here on we will explore one of them (instead of reading the review's text itself).

Before diving into individual papers focusing on RNAsequencing and AI, let's make a general introduction.

The idea of ML: how it was born...

The founding principle of ML is to emulate the functioning of biological neuron

First ML approach... the perceptron

... and developed

Then perceptron evolved...

And evolved again...

Machine Learning methods

Supervised Learning

In supervised learning data are labelled. Each point must present features (or covariates) and a label. The goal is to learn a function that maps covariates into the label.

Examples of supervised learning methods are Support Vectors Machines (SVMs).

Unsupervised Learning

Unsupervised learning is an algorithm that tries learning patterns from non-labelled data. The algorithm is, therefore, forced to build a simplified representation of data, retrieving information from them.

Examples of unsupervised learning methods are Convolutional Neural Networks, Autoencoders and Deep Neural Networks.

What are we able to do using machine learning in bioinformatics?

Cell

Let's go back on our way... Al applied in RNA-seq analyses

3.1 Batch-Correction of Technical Heterogeneity

Cit. 49

Article | Open Access | Published: 11 May 2020

Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis

<u>Xiangjie Li, Kui Wang, Yafei Lyu, Huize Pan, Jingxiao Zhang, Dwight Stambolian, Katalin Susztak,</u> <u>Muredach P. Reilly, Gang Hu</u> ⊠ & <u>Mingyao Li</u> ⊠

Nature Communications 11, Article number: 2338 (2020) Cite this article

36k Accesses | 127 Citations | 27 Altmetric | Metrics

https://www.nature.com/articles/ s41467-020-15851-3

3.1 Batch-Correction of Technical Heterogeneity

Cit. 49

Abstract

Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through unsupervised clustering, but the ever increasing number of cells and batch effect impose computational challenges. We present DESC, an unsupervised deep embedding algorithm that clusters scRNA-seq data by iteratively optimizing a clustering objective function. Through iterative self-learning, DESC gradually removes batch effects, as long as technical differences across batches are smaller than true biological variations. As a soft clustering algorithm, cluster assignment probabilities from DESC are biologically interpretable and can reveal both discrete and pseudotemporal structure of cells. Comprehensive evaluations show that DESC offers a proper balance of clustering accuracy and stability, has a small footprint on memory, does not explicitly require batch information for batch effect removal, and can utilize GPU when available. As the scale of single-cell studies continues to grow, we believe DESC will offer a valuable tool for biomedical researchers to disentangle complex cellular heterogeneity.

3.1 Batch-Correction of Technical Heterogeneity

Cit. 49

a Overview of the DESC framework. DESC starts with parameter initialization in which a stacked autoencoder is used for pretraining and learning a low-dimensional representation of the input gene expression matrix. The resulting encoder is then added to the iterative clustering neural network to cluster cells iteratively. The final output of DESC includes cluster assignment, the corresponding probabilities for cluster assignment for each cell, and the low-dimensional representation of the data;

a The t-SNE plots in which cells were colored by batch.

3.2 Dimensionality reduction approaches 3.2.1 Feature Extraction

Cit. 93

Article | Open Access | Published: 03 August 2020

A deep learning model to predict RNA-Seq expression of tumours from whole slide images

Benoît Schmauch 🖂, Alberto Romagnoni, Elodie Pronier, Charlie Saillard, Pascale Maillé, Julien Calderaro, Aurélie Kamoun, Meriem Sefta, Sylvain Toldo, Mikhail Zaslavskiy, Thomas Clozel, Matahi Moarii, Pierre Courtiol & Gilles Wainrib 🖂

Nature Communications 11, Article number: 3877 (2020) Cite this article

50k Accesses | 120 Citations | 71 Altmetric | Metrics

https://www.nature.com/articles/ s41467-020-17678-4

3.2 Dimensionality reduction approaches 3.2.1 Feature Extraction

Cit. 93

Abstract

Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as validated by CD3- and CD20-staining on an independent dataset. The transcriptomic representation learned by HE2RNA can also be transferred on other datasets, even of small size, to increase prediction performance for specific molecular phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the identification of tumors with microsatellite instability.

3.2 Dimensionality reduction approaches 3.2.1 Feature Extraction

Cit. 93

Hematoxylin & eosin (H&E)-stained histology slides and RNA-Seq data (FPKM-UQ values) for 28 different cancer types and 8725 patients were collected from The Cancer Genome Atlas (TCGA) and used to train the neural network HE2RNA to predict transcriptomic profile from the corresponding high-definition whole-slide images (WSI). During this task, the neural network learned an internal representation encoding both information from tiled images and gene expression levels. This transcriptomic representation can be used for: (1) transcriptome prediction from images without associated RNA sequencing. (2) The virtual spatialization of transcriptomic data. For each predicted coding or noncoding gene, a score is calculated for each tile on the corresponding WSI, which can be interpreted as the predicted gene expression for this tile (even though the real value is available only for the slide). These predictive scores can be used to generate heatmaps for each gene for which expression is significantly predicted. (3) Improving predictive performances for different tasks, in a transfer learning framework, as shown here for a realistic setup, for microsatellite instability (MSI) status prediction from non-annotated WSIs. Scale bar: 5 mm.

3.2 Dimensionality reduction approaches 3.2.1 Feature Selection

Cit. 55

Research article | Open Access | Published: 29 October 2018

Feature selection of gene expression data for Cancer classification using double RBF-kernels

Shenghui Liu, Chunrui Xu, Yusen Zhang 🗠, Jiaguo Liu, Bin Yu, Xiaoping Liu 🗠 & Matthias Dehmer

<u>BMC Bioinformatics</u> 19, Article number: 396 (2018) | <u>Cite this article</u>
10k Accesses | 39 Citations | 1 Altmetric | <u>Metrics</u>

https://bmcbioinformatics.biomedcentral.com/articles/ 10.1186/s12859-018-2400-2

3.2 Dimensionality reduction approaches 3.2.1 Feature Selection

Cit. 55

Abstract

Background

Using knowledge-based interpretation to analyze omics data can not only obtain essential information regarding various biological processes, but also reflect the current physiological status of cells and tissue. The major challenge to analyze gene expression data, with a large number of genes and small samples, is to extract disease-related information from a massive amount of redundant data and noise. Gene selection, eliminating redundant and irrelevant genes, has been a key step to address this problem.

Results

The modified method was tested on four benchmark datasets with either two-class phenotypes or multiclass phenotypes, outperforming previous methods, with relatively higher accuracy, true positive rate, false positive rate and reduced runtime.

Conclusions

This paper proposes an effective feature selection method, combining double RBF-kernels with weighted analysis, to extract feature genes from gene expression data, by exploring its nonlinear mapping ability.

3.2 Dimensionality reduction approaches 3.2.1 Feature Selection

Cit. 55

The colormap of the expression profiles for nine most significant genes selected by DKBCGS (**a**) and for 9 randomly chosen genes (**b**). The red line distinguishes between cancer samples and normal samples

3.3 Data distribution transformation

Cit. 104

JOURNAL ARTICLE

Discretization of gene expression data revised 🚥

Cristian A. Gallo, Rocio L. Cecchini, Jessica A. Carballido, Sandra Micheletto, Ignacio Ponzoni

Briefings in Bioinformatics, Volume 17, Issue 5, September 2016, Pages 758–770, https://doi.org/10.1093/bib/bbv074

Published: 22 September 2015 Article history •

https://academic.oup.com/bib/article/ 17/5/758/2261412

3.3 Data distribution transformation

Cit. 104

Abstract

Gene expression measurements represent the most important source of biological data used to unveil the interaction and functionality of genes. In this regard, several data mining and machine learning algorithms have been proposed that require, in a number of cases, some kind of data discretization to perform the inference. Selection of an appropriate discretization process has a major impact on the design and outcome of the inference algorithms, as there are a number of relevant issues that need to be considered. This study presents a revision of the current state-of-the-art discretization techniques, together with the key subjects that need to be considered when designing or selecting a discretization approach for gene expression data.

Keywords: discretization, data preprocessing, gene expression data, gene expression analysis, data mining, machine learning

Issue Section: Papers

3.3 Data distribution transformation

Cit. 104

Fig. 2

Main features of gene expression discretization with their multiple variants.

3.3 Data distribution transformation

An example of expression distribution discretisation... The Gene Set Enrichment Class Analysis (GSECA)

3.4 Data reconstruction: the sparsity issue

Cit. 59

Article Open Access Published: 05 November 2018

AutoImpute: Autoencoder based imputation of singlecell RNA-seq data

Divyanshu Talwar, Aanchal Mongia, Debarka Sengupta 🖂 & Angshul Majumdar

Scientific Reports 8, Article number: 16329 (2018) Cite this article

11k Accesses | 76 Citations | 21 Altmetric | Metrics

https://www.nature.com/articles/ s41598-018-34688-x

3.4 Data reconstruction: the sparsity issue

Cit. 59

Abstract

The emergence of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to measure the expression levels of thousands of genes at single-cell resolution. However, insufficient quantities of starting RNA in the individual cells cause significant dropout events, introducing a large number of zero counts in the expression matrix. To circumvent this, we developed an autoencoder-based sparse gene expression matrix imputation method. AutoImpute, which learns the inherent distribution of the input scRNA-seq data and imputes the missing values accordingly with minimal modification to the biologically silent genes. When tested on real scRNA-seq datasets, AutoImpute performed competitively wrt., the existing single-cell imputation methods, on the grounds of expression recovery from subsampled data, cell-clustering accuracy, variance stabilization and cell-type separability.

3.4 Data reconstruction: the sparsity issue

C.G.B.

3.4 Assessing inter-tumor heterogeneity: classification of cancer subtypes

Cit. 111

Article | Open Access | Published: 15 July 2019

Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma

Thanos P. Mourikis, Lorena Benedetti, Elizabeth Foxall, Damjan Temelkovski, Joel Nulsen, Juliane Perner, Matteo Cereda, Jesper Lagergren, Michael Howell, Christopher Yau, Rebecca C. Fitzgerald, Paola Scaffidi, The Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium & Francesca D. Ciccarelli

Nature Communications 10, Article number: 3101 (2019) Cite this article

7790 Accesses | 20 Citations | 38 Altmetric | Metrics

https://www.nature.com/articles/ s41467-019-10898-3

3.4 Assessing inter-tumor heterogeneity: classification of cancer subtypes

Cit. 111

Abstract

The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.

3.4 Assessing inter-tumor heterogeneity: classification of cancer subtypes

Cit. 111

Radial Linear Radial Samples Polynomial Siamoia Polvnomia Comparison of ranked genes Parameter Best models STEP 2 STEP 3 STEP 1 Final list Model selection Training and prediction Feature mapping of cancer genes b sysSVM on 261 EACs STEP 1 STEP 2 STEP 3 17,078 genes 476 known cancer genes 16,602 genes 952 genes damaged 116,989 times damaged 4091 times damaged 112,898 times damaged 2608 times Known cancer genes Helper score tSNE1

sysSVM

Fig. 1

Cancer helper genes in 261 EACs. **a** Schematic workflow of the sysSVM algorithm. **b** Application of sysSVM to 261 EACs. Genes with somatic damaging alterations (*n* = 116,989) were extracted from 261 EACs and divided into training (known cancer genes, blue) and prediction (rest of altered genes, purple) sets. sysSVM was trained on the properties of known drivers and the best models were used for prediction. All altered genes were scored in each patient individually and the top 10 hits were considered as the cancer helper genes in that patient, for a total of 2608 helper alterations, corresponding to 952 unique hits (red). **c** t-distributed Stochastic Neighbour Embedding (t-SNE) plot of 116,989 altered genes in 261 EACs. Starting from the 34 properties used in sysSVM, a 2-D map of the high-dimensional data was built using Rtsne package (https://github.com/jkrijthe/Rtsne) in R. Curves are coloured according to the density of 476 known cancer genes altered 4091 times (blue) used as a training set and the rest of altered genes are coloured according to their sysSVM score. **d** Distribution

4.2 Deciphering intra-tumor heterogeneity 4.2.1 Defining Cell Types and Clones

Cit. 70

Method | Open Access | Published: 14 January 2020

DENDRO: genetic heterogeneity profiling and subclone detection by single-cell RNA sequencing

Zilu Zhou, Bihui Xu, Andy Minn & Nancy R. Zhang 🖂

<u>Genome Biology</u> 21, Article number: 10 (2020) Cite this article

11k Accesses | 19 Citations | 22 Altmetric | Metrics

https://genomebiology.biomedcentral.com/articles/10.1186/ s13059-019-1922-x

4.2 Deciphering intra-tumor heterogeneity 4.2.1 Defining Cell Types and Clones

Cit. 70

Abstract

Although scRNA-seq is now ubiquitously adopted in studies of intratumor heterogeneity, detection of somatic mutations and inference of clonal membership from scRNA-seq is currently unreliable. We propose DENDRO, an analysis method for scRNA-seq data that clusters single cells into genetically distinct subclones and reconstructs the phylogenetic tree relating the subclones. DENDRO utilizes transcribed point mutations and accounts for technical noise and expression stochasticity. We benchmark DENDRO and demonstrate its application on simulation data and real data from three cancer types. In particular, on a mouse melanoma model in response to immunotherapy, DENDRO delineates the role of neoantigens in treatment response.

The DENDRO package, implemented in R, is available at https://github.com/zhouzilu/DENDRO, where we also provide a power calculation toolkit, DENDROplan, to aid in the design of scRNA-seq experiments for subclonal mutation analysis using DENDRO.

4.2 Deciphering intra-tumor heterogeneity 4.2.1 Defining Cell Types and Clones

Cit. 70 Fig. 1 A scRNA-seq STAR 2-pass **BAM file** SNA detection # of total allele reads # of alt. allele reads $N_c \rightarrow$ 5 7 8 6 4 $X_c \rightarrow$ 03 0 003 Ner position(q)position(g) Genetic divergence evaluation Genetic divergence matrix between cells 0 Kernel based clusterina 3 cell(c) in clones (by color) Parsimony tree

C.G.B.

Fig. 2

A

DENDRO accuracy assessment. **a** The overall simulation analysis pipeline. Mutation matrix (cell-byloci) is generated according to a simulated evolutionary tree, where the leaves are subclones and mutations can be placed on the branches. Matrices of alternative allele (X_{cg}) and total read counts (N_{cg}) are sampled from a scRNA-seq dataset with known transcriptomic allele-specific read counts. DENDRO cluster is further applied, and its performance is assessed by adjusted Rand index (global accuracy), capture rate (subclone-specific sensitivity), and purity (subclone-specific precision). See Additional file <u>2</u>: Supplementary Materials for detailed definition. Gray dashed line indicates optional input for DENDROplan, where bulk DNA-seq and bulk RNA-seq can guide the tree simulation and read count sampling procedure. **b** Cluster accuracy via simulation studies. Various parameters show

DENDRO analysis pipeline and genetic divergence evaluation. a DENDRO analysis pipeline overview.

UNIVERSITÀ DEGLI STUDI DI MILANO

4.2 Deciphering intra-tumor heterogeneity 4.2.2 Assessment of TME

Cit. 22

Article Open Access Published: 10 December 2020

Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma

Yan Zhou, Dong Yang, Qingcheng Yang, Xiaobin Lv, Wentao Huang, Zhenhua Zhou, Yaling Wang,
 Zhichang Zhang, Ting Yuan, Xiaomin Ding, Lina Tang, Jianjun Zhang, Junyi Yin, Yujing Huang, Wenxi Yu,
 Yonggang Wang, Chenliang Zhou, Yang Su, Aina He, Yuanjue Sun, Zan Shen, Binzhi Qian, Wei Meng, Jia
 Fei, ... Haiyan Hu 🖂 + Show authors

Nature Communications 11, Article number: 6322 (2020) Cite this article

29k Accesses | 127 Citations | 11 Altmetric | Metrics

https://www.nature.com/articles/ s41467-020-20059-6

4.2 Deciphering intra-tumor heterogeneity 4.2.2 Assessment of TME

Cit. 22

Abstract

Osteosarcoma is the most frequent primary bone tumor with poor prognosis. Through RNAsequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung metastatic osteosarcoma lesions, 11 major cell clusters are identified based on unbiased clustering of gene expression profiles and canonical markers. The transcriptomic properties, regulators and dynamics of osteosarcoma malignant cells together with their tumor microenvironment particularly stromal and immune cells are characterized. The transdifferentiation of malignant osteoblastic cells from malignant chondroblastic cells is revealed by analyses of inferred copy-number variation and trajectory. A proinflammatory FABP4⁺ macrophages infiltration is noticed in lung metastatic osteosarcoma lesions. Lower osteoclasts infiltration is observed in chondroblastic, recurrent and lung metastatic osteosarcoma lesions compared to primary osteoblastic osteosarcoma lesions. Importantly, TIGIT blockade enhances the cytotoxicity effects of the primary CD3⁺ T cells with high proportion of TIGIT⁺ cells against osteosarcoma. These results present a single-cell atlas, explore intratumor heterogeneity, and provide potential therapeutic targets for osteosarcoma.

Supplementary Fig. 17. Overview of the identified cellular subclusters in scRNA-seq data of the

OS lesions. a A summary of the cellular clusters and the subclusters of the 11 main cell types identified

in OS lesions. **b** A schematic diagram displayed the malignant OS transdifferentiation cells and tumor

microenvironment components.

OC.G.B.

4.3 Biomarker Identification

Cit. 33

> PLoS Comput Biol. 2019 Feb 20;15(2):e1006826. doi: 10.1371/journal.pcbi.1006826. eCollection 2019 Feb.

Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas

David G P van IJzendoorn ¹, Karoly Szuhai ², Inge H Briaire-de Bruijn ¹, Marie Kostine ¹, Marieke L Kuijjer ³, Judith V M G Bovée ¹ Affiliations + expand PMID: 30785874 PMCID: PMC6398862 DOI: 10.1371/journal.pcbi.1006826 Free PMC article

> https://journals.plos.org/ ploscompbiol/article?id=10.1371/ journal.pcbi.1006826

4.3 Biomarker Identification

Cit. 33 Abstract

Based on morphology it is often challenging to distinguish between the many different soft tissue sarcoma subtypes. Moreover, outcome of disease is highly variable even between patients with the same disease. Machine learning on transcriptome sequencing data could be a valuable new tool to understand differences between and within entities. Here we used machine learning analysis to identify novel diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas. Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue Expression project and the French Sarcoma Group. We identified three groups of tumors that overlap in their molecular profiles as seen with unsupervised t-Distributed Stochastic Neighbor Embedding clustering and a deep neural network. The three groups corresponded to subtypes that are morphologically overlapping. Using a random forest algorithm, we identified novel diagnostic markers for soft tissue sarcoma that distinguished between synovial sarcoma and MPNST, and that we validated using qRT-PCR in an independent series. Next, we identified prognostic genes that are strong predictors of disease outcome when used in a k-nearest neighbor algorithm. The prognostic genes were further validated in expression data from the French Sarcoma Group. One of these, HMMR, was validated in an independent series of leiomyosarcomas using immunohistochemistry on tissue micro array as a prognostic gene for disease-free interval. Furthermore, reconstruction of regulatory networks combined with data from the Connectivity Map showed, amongst others, that HDAC inhibitors could be a potential effective therapy for multiple soft tissue sarcoma subtypes. A viability assay with two HDAC inhibitors confirmed that both leiomyosarcoma and synovial sarcoma are sensitive to HDAC inhibition. In this study we identified novel diagnostic markers, prognostic markers and therapeutic leads from multiple soft tissue sarcoma gene expression datasets. Thus, machine learning algorithms are powerful new tools to improve our understanding of rare tumor entities.

CMAP analysis to identify novel therapies.

Cit. 33

Fig. 04

(a) CMAP analysis identifies potential drugs based on the expression profile. The chord diagram shows links between the drugs and soft tissue sarcoma subtypes. Some compounds such as trichostatin A, doxorubicin and tanespimycin show connections with multiple soft tissue sarcoma subtypes, which is illustrated by the box color for each drug (darker red indicates more connections). (b) The dose response curves are shown for both trichostatin A (TSA) and quisinostat as tested

4.4 Prediction of Patient Survival

Cit. 117

The Annals of Applied Statistics 2008, Vol. 2, No. 3, 841–860 DOI: 10.1214/08-AOAS169 In the Public Domain

RANDOM SURVIVAL FORESTS¹

BY HEMANT ISHWARAN, UDAYA B. KOGALUR, EUGENE H. BLACKSTONE AND MICHAEL S. LAUER

Cleveland Clinic, Columbia University, Cleveland Clinic and National Heart, Lung, and Blood Institute

> https://projecteuclid.org/journals/ annals-of-applied-statistics/ volume-2/issue-3/Random-survivalforests/10.1214/08-AOAS169.full

4.4 Prediction of Patient Survival

Cit. 117

We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package, randomSurvivalForest.

4.4 Prediction of Patient Survival

Cit. 117

Fig. 01

UNIVERSITA

DEGLI STUDI

DI MILANO

FIG. 1. Boxplots of estimated prediction error (calculated using by C-index of Section 5) from 100 independent bootstrap replicates. Prediction error estimated on out-of-bag data. Dots in boxplots indicate mean values; horizontal lines are medians. Methods compared were as follows: Cox (Cox-regression); RF (RF for censored data [Hothorn et al. (2006)]; RSF1 through RSF4 (RSF using log-rank, conservation-of-events, log-rank score and random log-rank splitting). All forest analyses comprised 1000 trees. Datasets are indicated above each boxplot in bold.

4.5 Identification of Neoepitopes

Cit. 78

<u>nature</u> > <u>nature biotechnology</u> > <u>articles</u> > article

Article Published: 14 October 2019

Predicting HLA class II antigen presentation through integrated deep learning

Binbin Chen, Michael S. Khodadoust, Niclas Olsson, Lisa E. Wagar, Ethan Fast, Chih Long Liu, Yagmur Muftuoglu, Brian J. Sworder, Maximilian Diehn, Ronald Levy, Mark M. Davis, Joshua E. Elias, Russ B. Altman & Ash A. Alizadeh 🖂

Nature Biotechnology 37, 1332–1343 (2019) Cite this article

30k Accesses | 140 Citations | 137 Altmetric | Metrics

https://www.nature.com/ articles/ s41587-019-0280-2

4.5 Identification of Neoepitopes

Cit. 78

Abstract

Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules would be valuable for vaccine development and cancer immunotherapies. Current computational methods trained on in vitro binding data are limited by insufficient training data and algorithmic constraints. Here we describe MARIA (major histocompatibility complex analysis with recurrent integrated architecture; https://maria.stanford.edu/), a multimodal recurrent neural network for predicting the likelihood of antigen presentation from a gene of interest in the context of specific HLA class II alleles. In addition to in vitro binding measurements, MARIA is trained on peptide HLA ligand sequences identified by mass spectrometry, expression levels of antigen genes and protease cleavage signatures. Because it leverages these diverse training data and our improved machine learning framework, MARIA (area under the curve = 0.89-0.92) outperformed existing methods in validation datasets. Across independent cancer neoantigen studies, peptides with high MARIA scores are more likely to elicit strong CD4⁺ T cell responses. MARIA allows identification of immunogenic epitopes in diverse cancers and autoimmune disease.

4. Al mining of cancer transcriptomes

4.5 Identification of Neoepitopes

C.G.B.

proteins (*y* axis); remaining peptides are separately depicted in Supplementary Fig. **1**. **e**, Training and evaluation scheme of MARIA, as a new machine learning framework for more accurate prediction of HLA-II ligands. Positive examples are HLA-II ligand peptide sequences directly identified by antigen presentation profiling of human cells and tissues by immunoprecipitation (i.p.) and MS, and negative examples are length-matched random human peptides (decoys). The model separately considers binding affinities estimated using in vitro binding data. Patient HLA-II allele or genotype and gene expression information are obtained from next-generation sequencing. A RNN integrates information and produces a predictor for HLA-II ligand presentation by minimizing training errors. Independent test sets determine the final performance of the model. See Supplementary Fig. **2** for detailed machine learning schemes.

