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Key steps in sequencing
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Main types of DNA sequencing
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Targeted sequencing: 
genes or regions of interest

Whole EXome Sequencing 
(WES/WXS): exome (coding 
sequences)

Whole Genome Sequencing 
(WGS) : genome



Deciphering DNA-seq data

5

Targeted 
Exome 

Genome 

C
an

ce
r p

at
ie

nt
s

Coventional
Treatment

Preciaion
cancer therapy

+

Alignment

Variant Calling

Identification of  
Candidates

Precision 
Medicine

mailto:matteo.cereda1@unimi.it


Alignment

6

C
an

ce
r p

at
ie

nt
s

Coventional
Treatment

Preciaion
cancer therapy

+

A The first step in data analysis is aligment i.e. we need to 
understand where reads map on the genome. 

Raw reads are usually found in FASTQ format, while the final 
output of the alignment is a SAM/BAM file. 

The alignment requires a genome reference. The most recent 
release is GRCh38 (2013). 
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The FASTQ format
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The FASTQ format keeps both read and read information in a 
unique file.

mailto:matteo.cereda1@unimi.it
https://academic.oup.com/nar/article/38/6/1767/3112533
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Each read is represented by four different fields (lines)

Base quality

Sequencing informationSequence

Null

The FASTQ format

mailto:matteo.cereda1@unimi.it
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Sequencer 
name

Sequencing 
number

Flowcell id  Flowcell 
coordinates

Quality control

Sample index

The FASTQ format

Each read is represented by four different fields (lines)

mailto:matteo.cereda1@unimi.it
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The most used quality measure for sequencing data is the 
Phred score.

PHRED SCORES AND THE QUAL FORMAT

The PHRED software reads DNA sequencing trace files,
calls bases and assigns a quality value to each base called
(9,10). This introduced the PHRED quality score of a
base call, defined in terms of the estimated probability
of error:

QPHRED ¼ "10# log10ðPeÞ 1

PHRED also introduced a new file format, known as the
QUAL format, after the default file extension, to hold these
quality scores. These are FASTA like, holding PHRED
scores as space separated plain text integers and supple-
ment a corresponding FASTA file with the associated
sequences. For example, here is a single read from the
NCBI sequence read archive (SRA, http://www.ncbi.nlm.
nih.gov/Traces/sra/sra.cgih) presented as a FASTA entry:

>SRR014849.1 EIXKN4201CFU84 length=93
GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG
GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA
AGCAATGCCAATA

and as a QUAL entry holding the PHRED scores:

>SRR014849.1 EIXKN4201CFU84 length=93
18 10 5 3 2 1 1 1 1 1 1 1 1 1 1 1 22 37
31 22 16 11 6 1 26 34 30 11 33 26 30 21
33 26 25 36 32 16 36 32 16 36 32 20 6
24 33 25 30 25 2 24 36 32 15 35 31 17
36 32 20 6 25 29 20 30 25 4 32 26 32 23
32 26 30 24 33 26 35 31 14 28 27 30 22
28 24 27 17 32 23 28 28

PHRED scores are now a de facto standard for repre-
senting sequencing read base qualities. For example, the
Roche 454 ‘off instrument’ applications allow conversion
from a binary Standard Flowgram Format (SFF) file to
FASTA and QUAL files. PHRED scores are also used
in SAM (Sequence Alignment/Map, http://samtools
.sourceforge.net/), Staden Experiment (11), ACE (12),
and FASTQ files.

SANGER FASTQ FORMAT

The FASTQ format was invented at the turn of the
century at the Wellcome Trust Sanger Institute by Jim
Mullikin, gradually disseminated, but never formally doc-
umented (Antony V. Cox, Sanger Institute, personal com-
munication 2009). The closest thing to an official
description from Sanger can be found on the MAQ/
BWA website (13,14), but even this is incomplete.
Full details of the file format, describing the read title,

sequence and quality scores are given later. Here, we con-
centrate on how the quality scores were encoded into a
simple string. Early FASTQ files were used for Sanger
capillary sequencing, and it was natural to use PHRED
quality scores (described above).
Storing PHRED scores as single characters (or bytes)

gave a simple but reasonably space efficient encoding. In
order that the file be human readable and easily edited,
this restricted the choices to the ASCII printable charac-
ters 32–126 (decimal), and since ASCII 32 is the space

character, Sanger FASTQ files use ASCII 33–126 to
encode PHRED qualities from 0 to 93 (i.e. PHRED
scores with an ASCII offset of 33).

This gives a very broad range of error probabilities,
from 1.0 (a wrong base) through to 10"9.3 (an extremely
accurate read) and so the Sanger FASTQ format is useful
both for raw sequencing reads and post-processed
assemblies where higher qualities occur.

The OBF projects refer to this, the original or standard
FASTQ format, as the Sanger variant, using the format
name ‘fastq-sanger’ (Table 1).

SOLEXA FASTQ FORMAT

In 2004, Solexa, Inc. introduced their own incompatible
(and indistinguishable) version of the FASTQ format (2).
Although the FASTQ format only records a single quality
score per letter, Solexa also produced other files with
quality scores for all four bases, and in order to represent
low-quality information more fully an alternative
logarithmic mapping was used (15). Solexa quality
scores are defined as:

QSolexa ¼ "10# log10
Pe

1" Pe

! "
2

Although different sequencing systems estimate their error
rates using different methodologies, simply rearranging
these two equations and equating the error estimates
allows a straightforward mapping between the two.
This conversion has gained widespread usage through
MAQ (13).

QPHRED ¼ 10# log10 10QSolexa=10 þ 1
# $

3

QSolexa ¼ 10# log10 10QPHRED=10 " 1
# $

4

An important consequence of these equations is for high
values the two scores are asymptotically equal, and after
rounding to the nearest integer scores of '10 are inter-
changeable (Figure 1). However, Solexa scores go down to
"5 (approximating a random read error probability of
0.75). The Sanger offset of 33 can, therefore, no longer
be used. Rather, an offset of 64 was chosen, meaning
ASCII 59 to 126 can be used, allowing Solexa scores
from "5 to 62 inclusive.

Table 1. The three described FASTQ variants, with columns giving
the description, format name used in OBF projects, range of ASCII
characters permitted in the quality string (in decimal notation),
ASCII encoding offset, type of quality score encoded and the
possible range of scores

Description, OBF name ASCII characters Quality score

Range Offset Type Range

Sanger standard
fastq-sanger 33–126 33 PHRED 0 to 93

Solexa/early Illumina
fastq-solexa 59–126 64 Solexa "5 to 62

Illumina 1.3+
fastq-illumina 64–126 64 PHRED 0 to 62

1768 Nucleic Acids Research, 2010, Vol. 38, No. 6
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Base quality

Phred Quality Score  Probability of incorrect base call  Base call accuracy	 
	 10	 	 	 	 	 	 1 in 10		 	 	 	 	 	      90%	  
	 20	 	 	 	 	 	 1 in 100	 	 	 	 	 	 	 99%	  
	 30	 	 	 	 	 	 1 in 1,000		 	 	 	 	      99.9%	 
	 40	 	 	 	 	 	 1 in 10,000	 	 	 	 	 	 99.99%	  
	 50	 	 	 	 	 	 1 in 100,000	 	 	 	 	 	 99.999%	  

In fastq format base quality is encoded in ASCII.

mailto:matteo.cereda1@unimi.it


FastQC to do quality control on reads
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Base quality distribution along the length of the read

Mean base quality distribution across reads

Percentage of each base along the sequence

Distribution of the percentage of GC along the sequence

Distribution of the percentage of N bases (not properly 
called) along the sequence

Fragment length distribution

Duplication rate

If there are recurrent identical sequences
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Mean base quality distributionBase quality distribution along the read

Percentage of each base along the sequence Duplication rate
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FastQ

SAM/
BAM

BWA-MEM to genome

Sequence Alignment/Map Format Specification

The SAM/BAM Format Specification Working Group

22 Aug 2022

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version 44b4167 from that repository, last modified on the date shown above.

1 The SAM Format Specification

SAM stands for Sequence Alignment/Map format. It is a TAB-delimited text format consisting of a header
section, which is optional, and an alignment section. If present, the header must be prior to the alignments.
Header lines start with ‘@’, while alignment lines do not. Each alignment line has 11 mandatory fields for
essential alignment information such as mapping position, and variable number of optional fields for flexible
or aligner specific information.

This specification is for version 1.6 of the SAM and BAM formats. Each SAM and BAM file may
optionally specify the version being used via the @HD VN tag. For full version history see Appendix B.

Unless explicitly specified elsewhere, all fields are encoded using 7-bit US-ASCII 1 in using the POSIX /
C locale. Regular expressions listed use the POSIX / IEEE Std 1003.1 extended syntax.

1.1 An example

Suppose we have the following alignment with bases in lowercase clipped from the alignment. Read r001/1
and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment.

Coor 12345678901234 5678901234567890123456789012345
ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG
+r002 aaaAGATAA*GGATA
+r003 gcctaAGCTAA
+r004 ATAGCT..............TCAGC
-r003 ttagctTAGGC
-r001/2 CAGCGGCAT

The corresponding SAM format is:2

1Charset ANSI X3.4-1968 as defined in RFC1345.
2The values in the FLAG column correspond to bitwise flags as follows: 99 = 0x63: first/next is reverse-complemented/

properly aligned/multiple segments; 0: no flags set, thus a mapped single segment; 2064 = 0x810: supplementary/reverse-
complemented; 147 = 0x93: last (second of a pair)/reverse-complemented/properly aligned/multiple segments.

1

Read pair

Chimeric pair

Split alignment

mailto:matteo.cereda1@unimi.it
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SAM è l'acronimo di Sequence Alignment/Map format. È un 
formato di testo delimitato da TAB costituito da una sezione di 
intestazione, che è facoltativa, e una sezione di allineamento.

Sequence Alignment/Map Format Specification

The SAM/BAM Format Specification Working Group

22 Aug 2022

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version 44b4167 from that repository, last modified on the date shown above.

1 The SAM Format Specification

SAM stands for Sequence Alignment/Map format. It is a TAB-delimited text format consisting of a header
section, which is optional, and an alignment section. If present, the header must be prior to the alignments.
Header lines start with ‘@’, while alignment lines do not. Each alignment line has 11 mandatory fields for
essential alignment information such as mapping position, and variable number of optional fields for flexible
or aligner specific information.

This specification is for version 1.6 of the SAM and BAM formats. Each SAM and BAM file may
optionally specify the version being used via the @HD VN tag. For full version history see Appendix B.

Unless explicitly specified elsewhere, all fields are encoded using 7-bit US-ASCII 1 in using the POSIX /
C locale. Regular expressions listed use the POSIX / IEEE Std 1003.1 extended syntax.

1.1 An example

Suppose we have the following alignment with bases in lowercase clipped from the alignment. Read r001/1
and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment.

Coor 12345678901234 5678901234567890123456789012345
ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG
+r002 aaaAGATAA*GGATA
+r003 gcctaAGCTAA
+r004 ATAGCT..............TCAGC
-r003 ttagctTAGGC
-r001/2 CAGCGGCAT

The corresponding SAM format is:2

1Charset ANSI X3.4-1968 as defined in RFC1345.
2The values in the FLAG column correspond to bitwise flags as follows: 99 = 0x63: first/next is reverse-complemented/

properly aligned/multiple segments; 0: no flags set, thus a mapped single segment; 2064 = 0x810: supplementary/reverse-
complemented; 147 = 0x93: last (second of a pair)/reverse-complemented/properly aligned/multiple segments.

1

@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

1.2 Terminologies and Concepts

Template A DNA/RNA sequence part of which is sequenced on a sequencing machine or assembled from
raw sequences.

Segment A contiguous sequence or subsequence.

Read A raw sequence that comes o↵ a sequencing machine. A read may consist of multiple segments. For
sequencing data, reads are indexed by the order in which they are sequenced.

Linear alignment An alignment of a read to a single reference sequence that may include insertions,
deletions, skips and clipping, but may not include direction changes (i.e., one portion of the alignment
on forward strand and another portion of alignment on reverse strand). A linear alignment can be
represented in a single SAM record.

Chimeric alignment An alignment of a read that cannot be represented as a linear alignment. A chimeric
alignment is represented as a set of linear alignments that do not have large overlaps. Typically, one
of the linear alignments in a chimeric alignment is considered the “representative” alignment, and the
others are called “supplementary” and are distinguished by the supplementary alignment flag. All the
SAM records in a chimeric alignment have the same QNAME and the same values for 0x40 and 0x80
flags (see Section 1.4). The decision regarding which linear alignment is representative is arbitrary.

Read alignment A linear alignment or a chimeric alignment that is the complete representation of the
alignment of the read.

Multiple mapping The correct placement of a read may be ambiguous, e.g., due to repeats. In this case,
there may be multiple read alignments for the same read. One of these alignments is considered
primary. All the other alignments have the secondary alignment flag set in the SAM records that
represent them. All the SAM records have the same QNAME and the same values for 0x40 and 0x80
flags. Typically the alignment designated primary is the best alignment, but the decision may be
arbitrary.3

1-based coordinate system A coordinate system where the first base of a sequence is one. In this co-
ordinate system, a region is specified by a closed interval. For example, the region between the 3rd
and the 7th bases inclusive is [3, 7]. The SAM, VCF, GFF and Wiggle formats are using the 1-based
coordinate system.

0-based coordinate system A coordinate system where the first base of a sequence is zero. In this
coordinate system, a region is specified by a half-closed-half-open interval. For example, the region
between the 3rd and the 7th bases inclusive is [2, 7). The BAM, BCFv2, BED, and PSL formats are
using the 0-based coordinate system.

Phred scale Given a probability 0 < p  1, the phred scale of p equals �10 log10 p, rounded to the closest
integer.

3Chimeric alignments are primarily caused by structural variations, gene fusions, misassemblies, RNA-seq or experimental
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@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

1.2 Terminologies and Concepts

Template A DNA/RNA sequence part of which is sequenced on a sequencing machine or assembled from
raw sequences.

Segment A contiguous sequence or subsequence.

Read A raw sequence that comes o↵ a sequencing machine. A read may consist of multiple segments. For
sequencing data, reads are indexed by the order in which they are sequenced.

Linear alignment An alignment of a read to a single reference sequence that may include insertions,
deletions, skips and clipping, but may not include direction changes (i.e., one portion of the alignment
on forward strand and another portion of alignment on reverse strand). A linear alignment can be
represented in a single SAM record.

Chimeric alignment An alignment of a read that cannot be represented as a linear alignment. A chimeric
alignment is represented as a set of linear alignments that do not have large overlaps. Typically, one
of the linear alignments in a chimeric alignment is considered the “representative” alignment, and the
others are called “supplementary” and are distinguished by the supplementary alignment flag. All the
SAM records in a chimeric alignment have the same QNAME and the same values for 0x40 and 0x80
flags (see Section 1.4). The decision regarding which linear alignment is representative is arbitrary.

Read alignment A linear alignment or a chimeric alignment that is the complete representation of the
alignment of the read.

Multiple mapping The correct placement of a read may be ambiguous, e.g., due to repeats. In this case,
there may be multiple read alignments for the same read. One of these alignments is considered
primary. All the other alignments have the secondary alignment flag set in the SAM records that
represent them. All the SAM records have the same QNAME and the same values for 0x40 and 0x80
flags. Typically the alignment designated primary is the best alignment, but the decision may be
arbitrary.3

1-based coordinate system A coordinate system where the first base of a sequence is one. In this co-
ordinate system, a region is specified by a closed interval. For example, the region between the 3rd
and the 7th bases inclusive is [3, 7]. The SAM, VCF, GFF and Wiggle formats are using the 1-based
coordinate system.

0-based coordinate system A coordinate system where the first base of a sequence is zero. In this
coordinate system, a region is specified by a half-closed-half-open interval. For example, the region
between the 3rd and the 7th bases inclusive is [2, 7). The BAM, BCFv2, BED, and PSL formats are
using the 0-based coordinate system.

Phred scale Given a probability 0 < p  1, the phred scale of p equals �10 log10 p, rounded to the closest
integer.

3Chimeric alignments are primarily caused by structural variations, gene fusions, misassemblies, RNA-seq or experimental

2

Versione
Tipo di ordinamento dell’allineamento

Dizionario delle sequenze di riferimento

Nome della 
sequenza di 
riferimento

Lunghezza della 
sequenza di 
riferimento
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@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

1.2 Terminologies and Concepts

Template A DNA/RNA sequence part of which is sequenced on a sequencing machine or assembled from
raw sequences.

Segment A contiguous sequence or subsequence.

Read A raw sequence that comes o↵ a sequencing machine. A read may consist of multiple segments. For
sequencing data, reads are indexed by the order in which they are sequenced.

Linear alignment An alignment of a read to a single reference sequence that may include insertions,
deletions, skips and clipping, but may not include direction changes (i.e., one portion of the alignment
on forward strand and another portion of alignment on reverse strand). A linear alignment can be
represented in a single SAM record.

Chimeric alignment An alignment of a read that cannot be represented as a linear alignment. A chimeric
alignment is represented as a set of linear alignments that do not have large overlaps. Typically, one
of the linear alignments in a chimeric alignment is considered the “representative” alignment, and the
others are called “supplementary” and are distinguished by the supplementary alignment flag. All the
SAM records in a chimeric alignment have the same QNAME and the same values for 0x40 and 0x80
flags (see Section 1.4). The decision regarding which linear alignment is representative is arbitrary.

Read alignment A linear alignment or a chimeric alignment that is the complete representation of the
alignment of the read.

Multiple mapping The correct placement of a read may be ambiguous, e.g., due to repeats. In this case,
there may be multiple read alignments for the same read. One of these alignments is considered
primary. All the other alignments have the secondary alignment flag set in the SAM records that
represent them. All the SAM records have the same QNAME and the same values for 0x40 and 0x80
flags. Typically the alignment designated primary is the best alignment, but the decision may be
arbitrary.3

1-based coordinate system A coordinate system where the first base of a sequence is one. In this co-
ordinate system, a region is specified by a closed interval. For example, the region between the 3rd
and the 7th bases inclusive is [3, 7]. The SAM, VCF, GFF and Wiggle formats are using the 1-based
coordinate system.

0-based coordinate system A coordinate system where the first base of a sequence is zero. In this
coordinate system, a region is specified by a half-closed-half-open interval. For example, the region
between the 3rd and the 7th bases inclusive is [2, 7). The BAM, BCFv2, BED, and PSL formats are
using the 0-based coordinate system.

Phred scale Given a probability 0 < p  1, the phred scale of p equals �10 log10 p, rounded to the closest
integer.

3Chimeric alignments are primarily caused by structural variations, gene fusions, misassemblies, RNA-seq or experimental

2

The reference sequence must be in the 7-bit US-ASCII character set. All valid reference bases can be
represented in this set, and it avoids the problem of determining exactly which 8-bit representation may
have been used. Padding characters (See Section 3.2) must be represented only using the ‘*’ character.

The digest is calculated as follows:

• All characters outside of the inclusive range 33 (‘!’) to 126 (‘˜’) are stripped out. This removes all
unprintable and whitespace characters including spaces and new lines. Everything else is retained,
even if not a legal nucleotide code.

• All lowercase characters are converted to uppercase. This operation is equivalent to calling toupper()

on characters in the POSIX locale.

• The MD5 digest is calculated as described in RFC 1321 and presented as a 32 character lowercase
hexadecimal number.

As an example, if the reference contains the following characters (including spaces):

ACGT ACGT ACGT
acgt acgt acgt
... 12345 !!!

then the digest is that of the string ACGTACGTACGTACGTACGTACGT...12345!!! and the resulting tag would
be M5:dfabdbb36e239a6da88957841f32b8e4.

In padded SAM files, the padding bases should be inserted into the reference as ‘*’ characters. Taking
the example in Section 3.2, the padded version of the reference is

AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

and the corresponding tag is M5:caad65b937c4bc0b33c08f62a9fb5411.

1.4 The alignment section: mandatory fields

In the SAM format, each alignment line typically represents the linear alignment of a segment. Each line
consists of 11 or more TAB-separated fields. The first eleven fields are always present and in the order
shown below; if the information represented by any of these fields is unavailable, that field’s value will be a
placeholder, either ‘0’ or ‘*’ as determined by the field’s type. The following table gives an overview of these
mandatory fields in the SAM format:

Col Field Type Regexp/Range Brief description
1 QNAME String [!-?A-~]{1,254} Query template NAME
2 FLAG Int [0, 216 � 1] bitwise FLAG
3 RNAME String \*|[:rname:

^*=][:rname:]* Reference sequence NAME11

4 POS Int [0, 231 � 1] 1-based leftmost mapping POSition
5 MAPQ Int [0, 28 � 1] MAPping Quality
6 CIGAR String \*|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String \*|=|[:rname:

^*=][:rname:]* Reference name of the mate/next read
8 PNEXT Int [0, 231 � 1] Position of the mate/next read
9 TLEN Int [�231 + 1, 231 � 1] observed Template LENgth

10 SEQ String \*|[A-Za-z=.]+ segment SEQuence
11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

All mapped segments in alignment lines are represented on the forward genomic strand. For segments
that have been mapped to the reverse strand, the recorded SEQ is reverse complemented from the original
unmapped sequence and CIGAR, QUAL, and strand-sensitive optional fields are reversed and thus recorded
consistently with the sequence bases as represented.

11Reference sequence names may contain any printable ASCII characters with the exception of certain punctuation characters,
and may not start with ‘*’ or ‘=’. See Section 1.2.1 for details and an explanation of the [:rname:] notation.

6

6

4. POS: 1-based leftmost mapping POSition of the first CIGAR operation that “consumes” a reference
base (see table below). The first base in a reference sequence has coordinate 1. POS is set as 0 for
an unmapped read without coordinate. If POS is 0, no assumptions can be made about RNAME and
CIGAR.

5. MAPQ: MAPping Quality. It equals �10 log10 Pr{mapping position is wrong}, rounded to the nearest
integer. A value 255 indicates that the mapping quality is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set ‘*’ if unavailable):

Op BAM Description
Consumes

query
Consumes
reference

M 0 alignment match (can be a sequence match or mismatch) yes yes
I 1 insertion to the reference yes no
D 2 deletion from the reference no yes
N 3 skipped region from the reference no yes
S 4 soft clipping (clipped sequences present in SEQ) yes no
H 5 hard clipping (clipped sequences NOT present in SEQ) no no
P 6 padding (silent deletion from padded reference) no no
= 7 sequence match yes yes
X 8 sequence mismatch yes yes

• “Consumes query” and “consumes reference” indicate whether the CIGAR operation causes the
alignment to step along the query sequence and the reference sequence respectively.

• H can only be present as the first and/or last operation.

• S may only have H operations between them and the ends of the CIGAR string.

• For mRNA-to-genome alignment, an N operation represents an intron. For other types of align-
ments, the interpretation of N is not defined.

• Sum of lengths of the M/I/S/=/X operations shall equal the length of SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read in the template. For
the last read, the next read is the first read in the template. If @SQ header lines are present, RNEXT (if
not ‘*’ or ‘=’) must be present in one of the SQ-SN tag. This field is set as ‘*’ when the information is
unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and the next read in the template
has one primary mapping (see also bit 0x100 in FLAG), this field is identical to RNAME at the primary
line of the next read. If RNEXT is ‘*’, no assumptions can be made on PNEXT and bit 0x20.

8. PNEXT: 1-based Position of the primary alignment of the NEXT read in the template. Set as 0 when
the information is unavailable. This field equals POS at the primary line of the next read. If PNEXT
is 0, no assumptions can be made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. For primary reads where the primary alignments of all reads
in the template are mapped to the same reference sequence, the absolute value of TLEN equals the
distance between the mapped end of the template and the mapped start of the template, inclusively
(i.e., end � start + 1).14 Note that mapped base is defined to be one that aligns to the reference as
described by CIGAR, hence excludes soft-clipped bases. The TLEN field is positive for the leftmost
segment of the template, negative for the rightmost, and the sign for any middle segment is undefined.
If segments cover the same coordinates then the choice of which is leftmost and rightmost is arbitrary,
but the two ends must still have di↵ering signs. It is set as 0 for a single-segment template or when
the information is unavailable (e.g., when the first or last segment of a multi-segment template is
unmapped or when the two are mapped to di↵erent reference sequences).

The intention of this field is to indicate where the other end of the template has been aligned without
needing to read the remainder of the SAM file. Unfortunately there has been no clear consensus on

14Thus a segment aligning in the forward direction at base 100 for length 50 and a segment aligning in the reverse direction
at base 200 for length 50 indicate the template covers bases 100 to 249 and has length 150.
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4. POS: 1-based leftmost mapping POSition of the first CIGAR operation that “consumes” a reference
base (see table below). The first base in a reference sequence has coordinate 1. POS is set as 0 for
an unmapped read without coordinate. If POS is 0, no assumptions can be made about RNAME and
CIGAR.

5. MAPQ: MAPping Quality. It equals �10 log10 Pr{mapping position is wrong}, rounded to the nearest
integer. A value 255 indicates that the mapping quality is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set ‘*’ if unavailable):

Op BAM Description
Consumes

query
Consumes
reference

M 0 alignment match (can be a sequence match or mismatch) yes yes
I 1 insertion to the reference yes no
D 2 deletion from the reference no yes
N 3 skipped region from the reference no yes
S 4 soft clipping (clipped sequences present in SEQ) yes no
H 5 hard clipping (clipped sequences NOT present in SEQ) no no
P 6 padding (silent deletion from padded reference) no no
= 7 sequence match yes yes
X 8 sequence mismatch yes yes

• “Consumes query” and “consumes reference” indicate whether the CIGAR operation causes the
alignment to step along the query sequence and the reference sequence respectively.

• H can only be present as the first and/or last operation.

• S may only have H operations between them and the ends of the CIGAR string.

• For mRNA-to-genome alignment, an N operation represents an intron. For other types of align-
ments, the interpretation of N is not defined.

• Sum of lengths of the M/I/S/=/X operations shall equal the length of SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read in the template. For
the last read, the next read is the first read in the template. If @SQ header lines are present, RNEXT (if
not ‘*’ or ‘=’) must be present in one of the SQ-SN tag. This field is set as ‘*’ when the information is
unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and the next read in the template
has one primary mapping (see also bit 0x100 in FLAG), this field is identical to RNAME at the primary
line of the next read. If RNEXT is ‘*’, no assumptions can be made on PNEXT and bit 0x20.

8. PNEXT: 1-based Position of the primary alignment of the NEXT read in the template. Set as 0 when
the information is unavailable. This field equals POS at the primary line of the next read. If PNEXT
is 0, no assumptions can be made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. For primary reads where the primary alignments of all reads
in the template are mapped to the same reference sequence, the absolute value of TLEN equals the
distance between the mapped end of the template and the mapped start of the template, inclusively
(i.e., end � start + 1).14 Note that mapped base is defined to be one that aligns to the reference as
described by CIGAR, hence excludes soft-clipped bases. The TLEN field is positive for the leftmost
segment of the template, negative for the rightmost, and the sign for any middle segment is undefined.
If segments cover the same coordinates then the choice of which is leftmost and rightmost is arbitrary,
but the two ends must still have di↵ering signs. It is set as 0 for a single-segment template or when
the information is unavailable (e.g., when the first or last segment of a multi-segment template is
unmapped or when the two are mapped to di↵erent reference sequences).

The intention of this field is to indicate where the other end of the template has been aligned without
needing to read the remainder of the SAM file. Unfortunately there has been no clear consensus on

14Thus a segment aligning in the forward direction at base 100 for length 50 and a segment aligning in the reverse direction
at base 200 for length 50 indicate the template covers bases 100 to 249 and has length 150.
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Whole-genome sequencing data
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remove the likely false positive calls. These filters include 
strand bias (for example, supporting reads are all in 
the reverse strand) (FIG. 2), the mapping quality of sup-
porting reads, the presence of nearby indels or multiple 

alternative alleles and whether the read alignment pat-
terns in the genomic region are ‘noisy’. These factors can-
not be captured effectively in a standard linear model. As  
a result, visual inspection of the aligned read patterns in a 
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Whole-exome sequencing data
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remove the likely false positive calls. These filters include 
strand bias (for example, supporting reads are all in 
the reverse strand) (FIG. 2), the mapping quality of sup-
porting reads, the presence of nearby indels or multiple 

alternative alleles and whether the read alignment pat-
terns in the genomic region are ‘noisy’. These factors can-
not be captured effectively in a standard linear model. As  
a result, visual inspection of the aligned read patterns in a 
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How can we see aligned data? Using IGV
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Reads

According to the site …“The Integrative Genomics Viewer (IGV) is a high-performance, easy-
to-use, interactive tool for the visual exploration of genomic data. It supports flexible integration 
of all the common types of genomic data and metadata, investigator-generated or publicly 
available, loaded from local or cloud sources.

IGV is available in multiple forms, including:

• the original IGV - a Java desktop application,

• IGV-Web - a web application,

• igv.js - a JavaScript component that can be embedded in web pages (for developers)”

https://software.broadinstitute.org/software/igv/#:~:text=The%20Integrative%20Genomics%20Viewer%20(IGV,from%20local%20or%20cloud%20sources.
https://www.nature.com/articles/s41576-021-00431-y


The Integrative Genomics Viewer (IGV) 
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Mutations identification
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The main goal of variant identification is to evaluate if the 
alternative alleles supported by sequencing reads are true 
mutations or artefacts. 

Vocabulary: 
• Single Nucleotide Polymorphisms (SNPs): is a germline 

substitution of a single nucleotide at a specific position in the 
genome 

• Single Nucleotide Variants (SNVs): a DNA sequence 
variation that occurs when a single nucleotide (adenine, 
thymine, cytosine, or guanine) in the genome sequence is 
altered. It is usually used for somatic mutations, nevertheless 
usually we can find the term “variant” for both somatic and 
germline mutations (Be aware of the context!!) 

• Small Insertions or Deletions (InDels) (<50 bp) 

V
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A lot of different tools are available for variant identification:

V

Mutations identification

mailto:matteo.cereda1@unimi.it


Error remotion

24

C
an

ce
r p

at
ie

nt
s

Coventional
Treatment

Preciaion
cancer therapy

+

V Retrieved 
mutations

Variant Calling Variant Calling QCs

Confident 
mutations
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Mutated genomic positions have to be annotated to understand 
their biological meaning. 

Can the identified SNP/SNV/InDel cause changes in protein 
coding and interested amino acids? 

V
chrom position ref var
chr17 17697102 G A
chr17 21319977 A G
chr17 26679861 G A
chr17 28890301 G A
chr17 36716758 G A
chr17 40369149 G A

information?

Functional 
annotation
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V

chrom position ref var func exonic.func gene

chr17 17697102 G A exonic synonymous SNV RAI1
chr17 21319977 A G UTR3 - KCNJ18
chr17 26679861 G A intronic - POLDIP2
chr17 28890301 G A exonic nonsynonymous SNV TBC1D29
chr17 36716758 G A intronic - SRCIN1
chr17 40369149 G A intronic - STAT5B

Functional 
annotation

Exonic 
functional 
annotation

Functional annotation
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V

Value Rank Explanation
exonic 1 variant overlaps a coding
splicing 1 variant is within 2-bp of a splicing junction

ncRNA 2 variant overlaps a transcript  
without coding annotation in the gene definition

UTR5 3 variant overlaps a 5' untranslated region
UTR3 3 variant overlaps a 3' untranslated region

intronic 4 variant overlaps an intron

upstream 5 variant overlaps 1-kb region  
upstream of transcription start site

downstream 5 variant overlaps 1-kb region  
downtream of transcription end site

intergenic 6 variant is in intergenic region

Functional annotation
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V

Exon

Splicing site

Intron

5’ UTR 3’ UTR

TSS TES

Gene locus

Functional annotation

Intergenic
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V

Annotation Rank Explanation

frameshift 
insertion

1 an insertion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift 
deletion

2 a deletion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift block 
substitution

3 a block substitution of one or more nucleotides that cause frameshift changes in 
protein coding sequence

stopgain 4 a variant lead to the immediate creation of stop codon at the variant site.

stoploss 5 a variant that lead to the immediate elimination of stop codon at the variant site

nonframeshift 
insertion

6 an insertion of 3 or multiples of 3 nucleotides that do not cause frameshift changes 
in protein coding sequence

nonframeshift 
deletion

7 a deletion of 3 or mutliples of 3 nucleotides that do not cause frameshift changes in 
protein coding sequence

nonframeshift 
block 
substitution

8 a block substitution of one or more nucleotides that do not cause frameshift 
changes in protein coding sequence

nonsynonymous 
SNV

9 a single nucleotide change that cause an amino acid change

synonymous 
SNV

10 a single nucleotide change that does not cause an amino acid change

unknown 11 unknown function (due to various errors in the gene structure definition in the 
database file)
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V

Annotation Rank Explanation

frameshift 
insertion

1 an insertion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift 
deletion

2 a deletion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift block 
substitution

3 a block substitution of one or more nucleotides that cause frameshift changes in 
protein coding sequence

stopgain 4 a variant lead to the immediate creation of stop codon at the variant site.

stoploss 5 a variant that lead to the immediate elimination of stop codon at the variant site

nonframeshift 
insertion

6 an insertion of 3 or multiples of 3 nucleotides that do not cause frameshift changes 
in protein coding sequence

nonframeshift 
deletion

7 a deletion of 3 or mutliples of 3 nucleotides that do not cause frameshift changes in 
protein coding sequence

nonframeshift 
block 
substitution

8 a block substitution of one or more nucleotides that do not cause frameshift 
changes in protein coding sequence

nonsynonymous 
SNV

9 a single nucleotide change that cause an amino acid change

synonymous 
SNV

10 a single nucleotide change that does not cause an amino acid change

unknown 11 unknown function (due to various errors in the gene structure definition in the 
database file)

Exonic functional annotation (nonsilent mutations)
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InterVar e CancerVar are curated databases for clinical 
interpretation. They contain catalogues of mutations previously 
pointed out to be pathogenetic or probably related to a disease. 

I

mailto:matteo.cereda1@unimi.it
https://wintervar.wglab.org/
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https://cancervar.wglab.org/
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In 2015, the ’American College of Medical Genetics and Genomics 
(ACMG) e l'Association for Molecular Pathology (AMP) published 
standard criterions and updated guidelines for the clinical 
interpretation of sequence variants (relations between variants and 
human diseases). 

InterVar generates an automatic interpretation based on 28 
criterions, classifying mutations as 'Benign', 'Likely benign', 
'Uncertain significance', 'Likely pathogenic' and 'Pathogenic'I

Clinical interpretation of germline mutations
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CancerVar is a bioinformatic tool for the clinical interpretation of 
somatic variants based on guidelines of the AMP/ASCO/CAP/
CGC 2017-2019 

CancerVar classifies somatic variants as:  
• Tier I/Pathogenic 
• Tier II/Likely pathogenic 
• Tier III/Variants of Unknown Clinical Significance (VUS)  
• Tier IV/Benign or Likely Benign Variants

I

Clinical interpretation of somatic mutations
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I

clinical-based prediction

Clinical interpretation of somatic mutations
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analysis to targeted cancer panels for clinical applications. 
This method was used to identify patients displaying the 
signature of a deficiency in homologous recombination, 
which may serve as an indication for favourable response 
to poly(ADP-ribose) polymerase (PARP) inhibitors152.

Analysing somatic structural variations
With the availability of WGS, a great deal of progress 
has been made in the characterization of somatic SVs 
in human cancers. The SVs inferred from WGS data 
range from simple deletions, insertions, duplications, 
inversions and translocations to copy number changes, 
transposable element insertions, viral integrations, tel-
omere length variation and complex rearrangements 
such as chromothripsis. Small deletions and inser-
tions (<50–100 bp) can be identified using individual 
reads, for example, by gapped alignment, but other SVs 
require different strategies. Although not discussed in 
this Review, a large body of work exists on how each 
type of variant may contribute to cancer development. 
For example, integrative analysis of translocations 
and epigenetic data has revealed the phenomenon of 
enhancer hijacking153–155 and enhancer amplification156,157.

As the terms CNVs and SVs are used to refer to either 
germline or somatic variants in the literature, here we use 
CNAs (also known as copy number aberrations) to refer 
to somatic CNVs and ‘somatic SVs’ (when contrasting 
with ‘germline SVs’) or simply ‘SVs’ to refer to somatic 
structural alterations. Approaches for investigating 
germline SVs have been recently reviewed elsewhere29.

Detecting copy number alterations. Conventional 
cytogenetic techniques such as fluorescent in  situ 
hybridization (FISH) and spectral karyotyping are 
useful for the routine diagnosis of genetic disorders 
and large chromosomal alterations, but their spatial 
resolution is in the order of megabases. Use of array 
comparative genomic hybridization (aCGH)158 and 
SNP arrays increased spatial resolution to the order of 
100 kb159. Some of the array-based platforms also offer 
information on copy-neutral loss of heterozygosity (LOH) 
events, tumour purity and ploidy160,161. WGS can iden-
tify CNAs and their underlying SVs, with breakpoints 
at single-nucleotide resolution.

One class of methods for identifying CNAs from 
sequencing data adapts the techniques developed for 
aCGH and SNP arrays, utilizing the ‘read depth’ along 
the genome as the main component. These methods 
segment the genome into regions with distinct copy 
numbers using hidden Markov models, circular binary 
segmentation162, piecewise constant fitting regression163 
or other statistical techniques164. Even for a diploid 
genome, the read depth varies along the genome due 
to mappability, GC bias and other factors; thus, either 
a matched control (so that the same biases could be 
subtracted) or normalization using a statistical model 
is necessary164. More advanced methods for detecting 
CNAs incorporate the frequencies of minor alleles, 
termed the B-allele frequency (BAF), which are inferred 
from heterozygous SNPs, for segmentation, and also 
detect allele-specific CNAs and copy-neutral LOH events 
(FIG. 4). The BAF profile, for instance, can help identify 
copy-neutral LOH events, which have comparable read 
depth with the non-altered regions of the genome (FIG. 4).

Most segmentation methods can detect large, 
chromosome-scale CNAs, but often give conflict-
ing copy number profiles at higher resolution165. This 
inconsistency is, in part, because the parameters in each 
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Fig. 4 | Impact of different copy number alterations on read depth and BAF profiles. 
In a diploid region with no alteration, there is one copy of each of the maternal and 
paternal alleles (alleles 1 and 2), so the total copy number is 2, the minor allele copy  
number is 1, the B-allele frequency (BAF) profile is centred on 0.5 and the read depth is 
approximately the same between the tumour and normal samples. In the event of  
a deletion, the total copy number decreases to 1 and the minor allele copy number to 0. 
The coverage of that region in the tumour sample drops, and the BAF of heterozygous 
single-nucleotide polymorphisms becomes either 0 or 1, with deviation towards 0.5  
due to the infiltration of normal tissue. An amplification leads to an increase in the  
total copy number to 3, but the copy number of the minor allele remains 1 because  
the non-amplified allele is not altered. The BAF profile shifts towards 1/3 and 2/3,  
corresponding to the fractions of reads covering the non-amplified or amplified allele, 
respectively. Finally, the total copy number for copy-neutral loss of heterozygosity (LOH) 
events, where one allele is amplified and the other is lost, is 2, and the minor copy  
number is 0, reflecting the loss of one allele. Thus, the BAF profile is similar to that  
of a deletion, although the read depth of the tumour relative to the normal sample  
is not altered. These examples illustrate the importance of integrating depth of  
coverage and BAF information to fully characterize copy number alterations.

Enhancer hijacking
Juxtaposition of an active 
enhancer element from a 
distant locus into the proximity 
of another gene, usually caused 
by a genomic rearrangement, 
leading to gene activation.

www.nature.com/nrg
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analysis to targeted cancer panels for clinical applications. 
This method was used to identify patients displaying the 
signature of a deficiency in homologous recombination, 
which may serve as an indication for favourable response 
to poly(ADP-ribose) polymerase (PARP) inhibitors152.

Analysing somatic structural variations
With the availability of WGS, a great deal of progress 
has been made in the characterization of somatic SVs 
in human cancers. The SVs inferred from WGS data 
range from simple deletions, insertions, duplications, 
inversions and translocations to copy number changes, 
transposable element insertions, viral integrations, tel-
omere length variation and complex rearrangements 
such as chromothripsis. Small deletions and inser-
tions (<50–100 bp) can be identified using individual 
reads, for example, by gapped alignment, but other SVs 
require different strategies. Although not discussed in 
this Review, a large body of work exists on how each 
type of variant may contribute to cancer development. 
For example, integrative analysis of translocations 
and epigenetic data has revealed the phenomenon of 
enhancer hijacking153–155 and enhancer amplification156,157.

As the terms CNVs and SVs are used to refer to either 
germline or somatic variants in the literature, here we use 
CNAs (also known as copy number aberrations) to refer 
to somatic CNVs and ‘somatic SVs’ (when contrasting 
with ‘germline SVs’) or simply ‘SVs’ to refer to somatic 
structural alterations. Approaches for investigating 
germline SVs have been recently reviewed elsewhere29.

Detecting copy number alterations. Conventional 
cytogenetic techniques such as fluorescent in  situ 
hybridization (FISH) and spectral karyotyping are 
useful for the routine diagnosis of genetic disorders 
and large chromosomal alterations, but their spatial 
resolution is in the order of megabases. Use of array 
comparative genomic hybridization (aCGH)158 and 
SNP arrays increased spatial resolution to the order of 
100 kb159. Some of the array-based platforms also offer 
information on copy-neutral loss of heterozygosity (LOH) 
events, tumour purity and ploidy160,161. WGS can iden-
tify CNAs and their underlying SVs, with breakpoints 
at single-nucleotide resolution.

One class of methods for identifying CNAs from 
sequencing data adapts the techniques developed for 
aCGH and SNP arrays, utilizing the ‘read depth’ along 
the genome as the main component. These methods 
segment the genome into regions with distinct copy 
numbers using hidden Markov models, circular binary 
segmentation162, piecewise constant fitting regression163 
or other statistical techniques164. Even for a diploid 
genome, the read depth varies along the genome due 
to mappability, GC bias and other factors; thus, either 
a matched control (so that the same biases could be 
subtracted) or normalization using a statistical model 
is necessary164. More advanced methods for detecting 
CNAs incorporate the frequencies of minor alleles, 
termed the B-allele frequency (BAF), which are inferred 
from heterozygous SNPs, for segmentation, and also 
detect allele-specific CNAs and copy-neutral LOH events 
(FIG. 4). The BAF profile, for instance, can help identify 
copy-neutral LOH events, which have comparable read 
depth with the non-altered regions of the genome (FIG. 4).

Most segmentation methods can detect large, 
chromosome-scale CNAs, but often give conflict-
ing copy number profiles at higher resolution165. This 
inconsistency is, in part, because the parameters in each 
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Fig. 4 | Impact of different copy number alterations on read depth and BAF profiles. 
In a diploid region with no alteration, there is one copy of each of the maternal and 
paternal alleles (alleles 1 and 2), so the total copy number is 2, the minor allele copy  
number is 1, the B-allele frequency (BAF) profile is centred on 0.5 and the read depth is 
approximately the same between the tumour and normal samples. In the event of  
a deletion, the total copy number decreases to 1 and the minor allele copy number to 0. 
The coverage of that region in the tumour sample drops, and the BAF of heterozygous 
single-nucleotide polymorphisms becomes either 0 or 1, with deviation towards 0.5  
due to the infiltration of normal tissue. An amplification leads to an increase in the  
total copy number to 3, but the copy number of the minor allele remains 1 because  
the non-amplified allele is not altered. The BAF profile shifts towards 1/3 and 2/3,  
corresponding to the fractions of reads covering the non-amplified or amplified allele, 
respectively. Finally, the total copy number for copy-neutral loss of heterozygosity (LOH) 
events, where one allele is amplified and the other is lost, is 2, and the minor copy  
number is 0, reflecting the loss of one allele. Thus, the BAF profile is similar to that  
of a deletion, although the read depth of the tumour relative to the normal sample  
is not altered. These examples illustrate the importance of integrating depth of  
coverage and BAF information to fully characterize copy number alterations.

Enhancer hijacking
Juxtaposition of an active 
enhancer element from a 
distant locus into the proximity 
of another gene, usually caused 
by a genomic rearrangement, 
leading to gene activation.
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Genome CNV profile
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Sequencing transcriptome

49

• Evaluate expression of genes/transcripts for: 
- All species of RNA 
- mRNA 
- small RNAs 

• Evaluate expression levels of exons 
- Patterns of alternative splicing 

• Evaluate transcriptional alterations 

• Annotate regions and functional elements 
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Key steps in sequencing

52



Deciphering gene expression

53

RNA-seq data analysis workflow: 
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Preciaion
cancer therapy

+

Alignment

Functional 
profiling

Transcripts’ 
quantification

QCs : sequence quality, GC content, 
duplicates

Differential Expression, Alternative splicing analysis, 
Over-representation Analyses/Gene Ontology

Quantification of gene/transcript expression

Fusion identification

QCs Reproducibility : correlation of expression values, 
PCA, batch effect correction
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2 Raw Data (Sequencing Reads)

2.3 Quality control of raw sequencing data

Quality controls should be done at every analysis step. Ideally, quality control should be proactive and
comprehensive — see it as a chance to get to know your data which will enable you to perform downstream
analyses with appropriate assumptions and parameters. Even if flaws and biases are identified, you may be
able to correct those problems in silico.

Figure 6: Typical bioinformatics workflow of di↵erential gene expression analysis with commonly used tools. Quality
controls are marked in orange, the most commonly used file formats to store the results of each bioinformatic step
are indicated in grey.

Since an analysis typically starts with the raw reads (stored in FASTQ files), your first step should be to check
the overall quality of the sequenced reads. A poor RNA-seq run will be characterized by one or more of the
following types of uninformative sequences:

• PCR duplicates*†

• adapter contamination

• rRNA and tRNA reads

• unmappable reads, e.g. from contaminating nucleic acids

All but the last category of possible problems can be detected using a program called FASTQC. FASTQC
is released by the Babraham Institute and can be freely downloaded at http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/. It performs multiple tests to evaluate the quality scores as well as
the sequence composition of the reads stored in a given FASTQ file. Each test is flagged with either “pass”,
“warning”, or “fail”, depending on how far the sample deviates from a hypothetical dataset without significant

†It is impossible to distinguish whether identical reads represent PCR duplicates or independent occurrences of the exact
same transcript fragment.
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Gene expression level distribution
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Differential expression

Two are the main goals of a differential expression (DE) analysis: 

1. Estimate the entity of variation between the two conditions, i.e. 
calculate Fold Change (FC) 

2. Estimate the significance of the difference, i.e. p-value, and correct it 
for multiple testing (p-adjusted).
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Raw Count 
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QC 
reproducibility

Differential 
expression analysis
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Normalization

Normalising data is fundamental. If we skip this step we introduce biases in 
our analysis.

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
#mrna-expression-transformation 

https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html 
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Functional annotation
Once identified differentially expressed genes, we can ask if they belong to 
some particular groups of genes, i.e. if they have common functionalities. 
We can perform a gene ontology/over-representation analysis/gene set 
enrichment analysis

http://geneontology.org/docs/ontology-documentation/
60
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Functional annotation
Once identified differentially expressed genes, we can ask if they belong to 
some particular groups of genes, i.e. if they have common functionalities. 
We can perform a gene ontology/over-representation analysis/gene set 
enrichment analysis

 https://www.gsea-msigdb.org/gsea/msigdb/
61
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