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Key steps in sequencing
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Main types of DNA sequencing
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Targeted sequencing: 
genes or regions of interest

Whole EXome Sequencing 
(WES/WXS): exome (coding 
sequences)

Whole Genome Sequencing 
(WGS) : genome



Deciphering DNA-seq data
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A The first step in data analysis is alignment i.e. we need to 
understand where reads map on the genome. 

Raw reads are usually found in FASTQ format, while the final 
output of the alignment is a SAM/BAM file. 

The alignment requires a genome reference. The most recent 
release is GRCh38 (2013). 
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The most used quality measure for sequencing data is the 
Phred score.

PHRED SCORES AND THE QUAL FORMAT

The PHRED software reads DNA sequencing trace files,
calls bases and assigns a quality value to each base called
(9,10). This introduced the PHRED quality score of a
base call, defined in terms of the estimated probability
of error:

QPHRED ¼ "10# log10ðPeÞ 1

PHRED also introduced a new file format, known as the
QUAL format, after the default file extension, to hold these
quality scores. These are FASTA like, holding PHRED
scores as space separated plain text integers and supple-
ment a corresponding FASTA file with the associated
sequences. For example, here is a single read from the
NCBI sequence read archive (SRA, http://www.ncbi.nlm.
nih.gov/Traces/sra/sra.cgih) presented as a FASTA entry:

>SRR014849.1 EIXKN4201CFU84 length=93
GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG
GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA
AGCAATGCCAATA

and as a QUAL entry holding the PHRED scores:

>SRR014849.1 EIXKN4201CFU84 length=93
18 10 5 3 2 1 1 1 1 1 1 1 1 1 1 1 22 37
31 22 16 11 6 1 26 34 30 11 33 26 30 21
33 26 25 36 32 16 36 32 16 36 32 20 6
24 33 25 30 25 2 24 36 32 15 35 31 17
36 32 20 6 25 29 20 30 25 4 32 26 32 23
32 26 30 24 33 26 35 31 14 28 27 30 22
28 24 27 17 32 23 28 28

PHRED scores are now a de facto standard for repre-
senting sequencing read base qualities. For example, the
Roche 454 ‘off instrument’ applications allow conversion
from a binary Standard Flowgram Format (SFF) file to
FASTA and QUAL files. PHRED scores are also used
in SAM (Sequence Alignment/Map, http://samtools
.sourceforge.net/), Staden Experiment (11), ACE (12),
and FASTQ files.

SANGER FASTQ FORMAT

The FASTQ format was invented at the turn of the
century at the Wellcome Trust Sanger Institute by Jim
Mullikin, gradually disseminated, but never formally doc-
umented (Antony V. Cox, Sanger Institute, personal com-
munication 2009). The closest thing to an official
description from Sanger can be found on the MAQ/
BWA website (13,14), but even this is incomplete.
Full details of the file format, describing the read title,

sequence and quality scores are given later. Here, we con-
centrate on how the quality scores were encoded into a
simple string. Early FASTQ files were used for Sanger
capillary sequencing, and it was natural to use PHRED
quality scores (described above).
Storing PHRED scores as single characters (or bytes)

gave a simple but reasonably space efficient encoding. In
order that the file be human readable and easily edited,
this restricted the choices to the ASCII printable charac-
ters 32–126 (decimal), and since ASCII 32 is the space

character, Sanger FASTQ files use ASCII 33–126 to
encode PHRED qualities from 0 to 93 (i.e. PHRED
scores with an ASCII offset of 33).

This gives a very broad range of error probabilities,
from 1.0 (a wrong base) through to 10"9.3 (an extremely
accurate read) and so the Sanger FASTQ format is useful
both for raw sequencing reads and post-processed
assemblies where higher qualities occur.

The OBF projects refer to this, the original or standard
FASTQ format, as the Sanger variant, using the format
name ‘fastq-sanger’ (Table 1).

SOLEXA FASTQ FORMAT

In 2004, Solexa, Inc. introduced their own incompatible
(and indistinguishable) version of the FASTQ format (2).
Although the FASTQ format only records a single quality
score per letter, Solexa also produced other files with
quality scores for all four bases, and in order to represent
low-quality information more fully an alternative
logarithmic mapping was used (15). Solexa quality
scores are defined as:

QSolexa ¼ "10# log10
Pe

1" Pe

! "
2

Although different sequencing systems estimate their error
rates using different methodologies, simply rearranging
these two equations and equating the error estimates
allows a straightforward mapping between the two.
This conversion has gained widespread usage through
MAQ (13).

QPHRED ¼ 10# log10 10QSolexa=10 þ 1
# $

3

QSolexa ¼ 10# log10 10QPHRED=10 " 1
# $

4

An important consequence of these equations is for high
values the two scores are asymptotically equal, and after
rounding to the nearest integer scores of '10 are inter-
changeable (Figure 1). However, Solexa scores go down to
"5 (approximating a random read error probability of
0.75). The Sanger offset of 33 can, therefore, no longer
be used. Rather, an offset of 64 was chosen, meaning
ASCII 59 to 126 can be used, allowing Solexa scores
from "5 to 62 inclusive.

Table 1. The three described FASTQ variants, with columns giving
the description, format name used in OBF projects, range of ASCII
characters permitted in the quality string (in decimal notation),
ASCII encoding offset, type of quality score encoded and the
possible range of scores

Description, OBF name ASCII characters Quality score

Range Offset Type Range

Sanger standard
fastq-sanger 33–126 33 PHRED 0 to 93

Solexa/early Illumina
fastq-solexa 59–126 64 Solexa "5 to 62

Illumina 1.3+
fastq-illumina 64–126 64 PHRED 0 to 62

1768 Nucleic Acids Research, 2010, Vol. 38, No. 6
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Base quality

Phred Quality Score  Probability of incorrect base call  Base call accuracy	 
	 10	 	 	 	 	 	 1 in 10		 	 	 	 	 	      90%	  
	 20	 	 	 	 	 	 1 in 100	 	 	 	 	 	 	 99%	  
	 30	 	 	 	 	 	 1 in 1,000		 	 	 	 	      99.9%	 
	 40	 	 	 	 	 	 1 in 10,000	 	 	 	 	 	 99.99%	  
	 50	 	 	 	 	 	 1 in 100,000	 	 	 	 	 	 99.999%	  

In fastq format base quality is encoded in ASCII.

mailto:matteo.cereda1@unimi.it


FastQC to do quality control on reads
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Base quality distribution along the length of the read

Mean base quality distribution across reads

Percentage of each base along the sequence

Distribution of the percentage of GC along the sequence

Distribution of the percentage of N bases (not properly 
called) along the sequence

Fragment length distribution

Duplication rate

If there are recurrent identical sequences
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Mean base quality distributionBase quality distribution along the read

Percentage of each base along the sequence Duplication rate



Whole-genome sequencing data
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remove the likely false positive calls. These filters include 
strand bias (for example, supporting reads are all in 
the reverse strand) (FIG. 2), the mapping quality of sup-
porting reads, the presence of nearby indels or multiple 

alternative alleles and whether the read alignment pat-
terns in the genomic region are ‘noisy’. These factors can-
not be captured effectively in a standard linear model. As  
a result, visual inspection of the aligned read patterns in a 
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Whole-exome sequencing data
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remove the likely false positive calls. These filters include 
strand bias (for example, supporting reads are all in 
the reverse strand) (FIG. 2), the mapping quality of sup-
porting reads, the presence of nearby indels or multiple 

alternative alleles and whether the read alignment pat-
terns in the genomic region are ‘noisy’. These factors can-
not be captured effectively in a standard linear model. As  
a result, visual inspection of the aligned read patterns in a 
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How can we see aligned data? Using IGV
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https://igv.org/doc/desktop/

Reads

“The Integrative Genomics Viewer (IGV) is a high-performance, easy-to-use, interactive tool for 
the visual exploration of genomic data. It supports flexible integration of all the common types of 
genomic data and metadata, investigator-generated or publicly available, loaded from local or 
cloud sources.

IGV is available in multiple forms, including:

• the original IGV - a Java desktop application,

• IGV-Web - a web application,

• igv.js - a JavaScript component that can be embedded in web pages (for developers)”

https://igv.org/doc/desktop/


The Integrative Genomics Viewer (IGV) 

12
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The main goal of variant identification is to evaluate if the 
alternative alleles supported by sequencing reads are true 
mutations or artefacts. 

Vocabulary: 
• Single Nucleotide Polymorphisms (SNPs): is a germline 

substitution of a single nucleotide at a specific position in the 
genome 

• Single Nucleotide Variants (SNVs): a DNA sequence 
variation that occurs when a single nucleotide (adenine, 
thymine, cytosine, or guanine) in the genome sequence is 
altered. It is usually used for somatic mutations, nevertheless 
usually we can find the term “variant” for both somatic and 
germline mutations (Be aware of the context!!) 

• Small Insertions or Deletions (InDels) (<50 bp) 

V

mailto:matteo.cereda1@unimi.it
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A lot of different tools are available for variant identification:

V

Mutations identification

mailto:matteo.cereda1@unimi.it
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V Retrieved 
mutations

Variant Calling Variant Calling QCs

Confident 
mutations
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Mutated genomic positions have to be annotated to understand 
their biological meaning. 

Can the identified SNP/SNV/InDel cause changes in protein 
coding and interested amino acids? 

V
chrom position ref var
chr17 17697102 G A
chr17 21319977 A G
chr17 26679861 G A
chr17 28890301 G A
chr17 36716758 G A
chr17 40369149 G A

information?

Functional 
annotation

mailto:matteo.cereda1@unimi.it
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V

chrom position ref var func exonic.func gene

chr17 17697102 G A exonic synonymous SNV RAI1
chr17 21319977 A G UTR3 - KCNJ18
chr17 26679861 G A intronic - POLDIP2
chr17 28890301 G A exonic nonsynonymous SNV TBC1D29
chr17 36716758 G A intronic - SRCIN1
chr17 40369149 G A intronic - STAT5B

Functional 
annotation

Exonic 
functional 
annotation

Functional annotation

mailto:matteo.cereda1@unimi.it
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V

Value Rank Explanation
exonic 1 variant overlaps a coding
splicing 1 variant is within 2-bp of a splicing junction

ncRNA 2 variant overlaps a transcript  
without coding annotation in the gene definition

UTR5 3 variant overlaps a 5' untranslated region
UTR3 3 variant overlaps a 3' untranslated region

intronic 4 variant overlaps an intron

upstream 5 variant overlaps 1-kb region  
upstream of transcription start site

downstream 5 variant overlaps 1-kb region  
downtream of transcription end site

intergenic 6 variant is in intergenic region

Functional annotation

mailto:matteo.cereda1@unimi.it


20

C
an

ce
r p

at
ie

nt
s

Coventional
Treatment

Preciaion
cancer therapy

+

V

Exon

Splicing site

Intron

5’ UTR 3’ UTR

TSS TES

Gene locus

Functional annotation

Intergenic
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V

Annotation Rank Explanation

frameshift 
insertion

1 an insertion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift 
deletion

2 a deletion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift block 
substitution

3 a block substitution of one or more nucleotides that cause frameshift changes in 
protein coding sequence

stopgain 4 a variant lead to the immediate creation of stop codon at the variant site.

stoploss 5 a variant that lead to the immediate elimination of stop codon at the variant site

nonframeshift 
insertion

6 an insertion of 3 or multiples of 3 nucleotides that do not cause frameshift changes 
in protein coding sequence

nonframeshift 
deletion

7 a deletion of 3 or mutliples of 3 nucleotides that do not cause frameshift changes in 
protein coding sequence

nonframeshift 
block 
substitution

8 a block substitution of one or more nucleotides that do not cause frameshift 
changes in protein coding sequence

nonsynonymous 
SNV

9 a single nucleotide change that cause an amino acid change

synonymous 
SNV

10 a single nucleotide change that does not cause an amino acid change

unknown 11 unknown function (due to various errors in the gene structure definition in the 
database file)

mailto:matteo.cereda1@unimi.it


C
an

ce
r p

at
ie

nt
s

Coventional
Treatment

Preciaion
cancer therapy

+

V

Annotation Rank Explanation

frameshift 
insertion

1 an insertion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift 
deletion

2 a deletion of one or more nucleotides that cause frameshift changes in protein 
coding sequence

frameshift block 
substitution

3 a block substitution of one or more nucleotides that cause frameshift changes in 
protein coding sequence

stopgain 4 a variant lead to the immediate creation of stop codon at the variant site.

stoploss 5 a variant that lead to the immediate elimination of stop codon at the variant site

nonframeshift 
insertion

6 an insertion of 3 or multiples of 3 nucleotides that do not cause frameshift changes 
in protein coding sequence

nonframeshift 
deletion

7 a deletion of 3 or mutliples of 3 nucleotides that do not cause frameshift changes in 
protein coding sequence

nonframeshift 
block 
substitution

8 a block substitution of one or more nucleotides that do not cause frameshift 
changes in protein coding sequence

nonsynonymous 
SNV

9 a single nucleotide change that cause an amino acid change

synonymous 
SNV

10 a single nucleotide change that does not cause an amino acid change

unknown 11 unknown function (due to various errors in the gene structure definition in the 
database file)

Exonic functional annotation (nonsilent mutations)

mailto:matteo.cereda1@unimi.it
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InterVar e CancerVar are curated databases for clinical 
interpretation. They contain catalogues of mutations previously 
pointed out to be pathogenetic or probably related to a disease. 

I

https://wintervar.wglab.org/

https://cancervar.wglab.org/

mailto:matteo.cereda1@unimi.it
https://wintervar.wglab.org/
http://www.apple.com/uk
https://cancervar.wglab.org/
http://www.apple.com/uk
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In 2015, the ’American College of Medical Genetics and Genomics 
(ACMG) e l'Association for Molecular Pathology (AMP) published 
standard criterions and updated guidelines for the clinical 
interpretation of sequence variants (relations between variants and 
human diseases). 

InterVar generates an automatic interpretation based on 28 
criterions, classifying mutations as 'Benign', 'Likely benign', 
'Uncertain significance', 'Likely pathogenic' and 'Pathogenic'I

Clinical interpretation of germline mutations

mailto:matteo.cereda1@unimi.it
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CancerVar is a bioinformatic tool for the clinical interpretation of 
somatic variants based on guidelines of the AMP/ASCO/CAP/
CGC 2017-2019 

CancerVar classifies somatic variants as:  
• Tier I/Pathogenic 
• Tier II/Likely pathogenic 
• Tier III/Variants of Unknown Clinical Significance (VUS)  
• Tier IV/Benign or Likely Benign Variants

I

Clinical interpretation of somatic mutations

mailto:matteo.cereda1@unimi.it
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Clinical interpretation of somatic mutations
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I

clinical-based prediction

Clinical interpretation of somatic mutations
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analysis to targeted cancer panels for clinical applications. 
This method was used to identify patients displaying the 
signature of a deficiency in homologous recombination, 
which may serve as an indication for favourable response 
to poly(ADP-ribose) polymerase (PARP) inhibitors152.

Analysing somatic structural variations
With the availability of WGS, a great deal of progress 
has been made in the characterization of somatic SVs 
in human cancers. The SVs inferred from WGS data 
range from simple deletions, insertions, duplications, 
inversions and translocations to copy number changes, 
transposable element insertions, viral integrations, tel-
omere length variation and complex rearrangements 
such as chromothripsis. Small deletions and inser-
tions (<50–100 bp) can be identified using individual 
reads, for example, by gapped alignment, but other SVs 
require different strategies. Although not discussed in 
this Review, a large body of work exists on how each 
type of variant may contribute to cancer development. 
For example, integrative analysis of translocations 
and epigenetic data has revealed the phenomenon of 
enhancer hijacking153–155 and enhancer amplification156,157.

As the terms CNVs and SVs are used to refer to either 
germline or somatic variants in the literature, here we use 
CNAs (also known as copy number aberrations) to refer 
to somatic CNVs and ‘somatic SVs’ (when contrasting 
with ‘germline SVs’) or simply ‘SVs’ to refer to somatic 
structural alterations. Approaches for investigating 
germline SVs have been recently reviewed elsewhere29.

Detecting copy number alterations. Conventional 
cytogenetic techniques such as fluorescent in  situ 
hybridization (FISH) and spectral karyotyping are 
useful for the routine diagnosis of genetic disorders 
and large chromosomal alterations, but their spatial 
resolution is in the order of megabases. Use of array 
comparative genomic hybridization (aCGH)158 and 
SNP arrays increased spatial resolution to the order of 
100 kb159. Some of the array-based platforms also offer 
information on copy-neutral loss of heterozygosity (LOH) 
events, tumour purity and ploidy160,161. WGS can iden-
tify CNAs and their underlying SVs, with breakpoints 
at single-nucleotide resolution.

One class of methods for identifying CNAs from 
sequencing data adapts the techniques developed for 
aCGH and SNP arrays, utilizing the ‘read depth’ along 
the genome as the main component. These methods 
segment the genome into regions with distinct copy 
numbers using hidden Markov models, circular binary 
segmentation162, piecewise constant fitting regression163 
or other statistical techniques164. Even for a diploid 
genome, the read depth varies along the genome due 
to mappability, GC bias and other factors; thus, either 
a matched control (so that the same biases could be 
subtracted) or normalization using a statistical model 
is necessary164. More advanced methods for detecting 
CNAs incorporate the frequencies of minor alleles, 
termed the B-allele frequency (BAF), which are inferred 
from heterozygous SNPs, for segmentation, and also 
detect allele-specific CNAs and copy-neutral LOH events 
(FIG. 4). The BAF profile, for instance, can help identify 
copy-neutral LOH events, which have comparable read 
depth with the non-altered regions of the genome (FIG. 4).

Most segmentation methods can detect large, 
chromosome-scale CNAs, but often give conflict-
ing copy number profiles at higher resolution165. This 
inconsistency is, in part, because the parameters in each 
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Fig. 4 | Impact of different copy number alterations on read depth and BAF profiles. 
In a diploid region with no alteration, there is one copy of each of the maternal and 
paternal alleles (alleles 1 and 2), so the total copy number is 2, the minor allele copy  
number is 1, the B-allele frequency (BAF) profile is centred on 0.5 and the read depth is 
approximately the same between the tumour and normal samples. In the event of  
a deletion, the total copy number decreases to 1 and the minor allele copy number to 0. 
The coverage of that region in the tumour sample drops, and the BAF of heterozygous 
single-nucleotide polymorphisms becomes either 0 or 1, with deviation towards 0.5  
due to the infiltration of normal tissue. An amplification leads to an increase in the  
total copy number to 3, but the copy number of the minor allele remains 1 because  
the non-amplified allele is not altered. The BAF profile shifts towards 1/3 and 2/3,  
corresponding to the fractions of reads covering the non-amplified or amplified allele, 
respectively. Finally, the total copy number for copy-neutral loss of heterozygosity (LOH) 
events, where one allele is amplified and the other is lost, is 2, and the minor copy  
number is 0, reflecting the loss of one allele. Thus, the BAF profile is similar to that  
of a deletion, although the read depth of the tumour relative to the normal sample  
is not altered. These examples illustrate the importance of integrating depth of  
coverage and BAF information to fully characterize copy number alterations.

Enhancer hijacking
Juxtaposition of an active 
enhancer element from a 
distant locus into the proximity 
of another gene, usually caused 
by a genomic rearrangement, 
leading to gene activation.

www.nature.com/nrg

R E V I E W S

306 | MAY 2022 | VOLUME 23 



38

0123456789();: 

analysis to targeted cancer panels for clinical applications. 
This method was used to identify patients displaying the 
signature of a deficiency in homologous recombination, 
which may serve as an indication for favourable response 
to poly(ADP-ribose) polymerase (PARP) inhibitors152.

Analysing somatic structural variations
With the availability of WGS, a great deal of progress 
has been made in the characterization of somatic SVs 
in human cancers. The SVs inferred from WGS data 
range from simple deletions, insertions, duplications, 
inversions and translocations to copy number changes, 
transposable element insertions, viral integrations, tel-
omere length variation and complex rearrangements 
such as chromothripsis. Small deletions and inser-
tions (<50–100 bp) can be identified using individual 
reads, for example, by gapped alignment, but other SVs 
require different strategies. Although not discussed in 
this Review, a large body of work exists on how each 
type of variant may contribute to cancer development. 
For example, integrative analysis of translocations 
and epigenetic data has revealed the phenomenon of 
enhancer hijacking153–155 and enhancer amplification156,157.

As the terms CNVs and SVs are used to refer to either 
germline or somatic variants in the literature, here we use 
CNAs (also known as copy number aberrations) to refer 
to somatic CNVs and ‘somatic SVs’ (when contrasting 
with ‘germline SVs’) or simply ‘SVs’ to refer to somatic 
structural alterations. Approaches for investigating 
germline SVs have been recently reviewed elsewhere29.

Detecting copy number alterations. Conventional 
cytogenetic techniques such as fluorescent in  situ 
hybridization (FISH) and spectral karyotyping are 
useful for the routine diagnosis of genetic disorders 
and large chromosomal alterations, but their spatial 
resolution is in the order of megabases. Use of array 
comparative genomic hybridization (aCGH)158 and 
SNP arrays increased spatial resolution to the order of 
100 kb159. Some of the array-based platforms also offer 
information on copy-neutral loss of heterozygosity (LOH) 
events, tumour purity and ploidy160,161. WGS can iden-
tify CNAs and their underlying SVs, with breakpoints 
at single-nucleotide resolution.

One class of methods for identifying CNAs from 
sequencing data adapts the techniques developed for 
aCGH and SNP arrays, utilizing the ‘read depth’ along 
the genome as the main component. These methods 
segment the genome into regions with distinct copy 
numbers using hidden Markov models, circular binary 
segmentation162, piecewise constant fitting regression163 
or other statistical techniques164. Even for a diploid 
genome, the read depth varies along the genome due 
to mappability, GC bias and other factors; thus, either 
a matched control (so that the same biases could be 
subtracted) or normalization using a statistical model 
is necessary164. More advanced methods for detecting 
CNAs incorporate the frequencies of minor alleles, 
termed the B-allele frequency (BAF), which are inferred 
from heterozygous SNPs, for segmentation, and also 
detect allele-specific CNAs and copy-neutral LOH events 
(FIG. 4). The BAF profile, for instance, can help identify 
copy-neutral LOH events, which have comparable read 
depth with the non-altered regions of the genome (FIG. 4).

Most segmentation methods can detect large, 
chromosome-scale CNAs, but often give conflict-
ing copy number profiles at higher resolution165. This 
inconsistency is, in part, because the parameters in each 
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Fig. 4 | Impact of different copy number alterations on read depth and BAF profiles. 
In a diploid region with no alteration, there is one copy of each of the maternal and 
paternal alleles (alleles 1 and 2), so the total copy number is 2, the minor allele copy  
number is 1, the B-allele frequency (BAF) profile is centred on 0.5 and the read depth is 
approximately the same between the tumour and normal samples. In the event of  
a deletion, the total copy number decreases to 1 and the minor allele copy number to 0. 
The coverage of that region in the tumour sample drops, and the BAF of heterozygous 
single-nucleotide polymorphisms becomes either 0 or 1, with deviation towards 0.5  
due to the infiltration of normal tissue. An amplification leads to an increase in the  
total copy number to 3, but the copy number of the minor allele remains 1 because  
the non-amplified allele is not altered. The BAF profile shifts towards 1/3 and 2/3,  
corresponding to the fractions of reads covering the non-amplified or amplified allele, 
respectively. Finally, the total copy number for copy-neutral loss of heterozygosity (LOH) 
events, where one allele is amplified and the other is lost, is 2, and the minor copy  
number is 0, reflecting the loss of one allele. Thus, the BAF profile is similar to that  
of a deletion, although the read depth of the tumour relative to the normal sample  
is not altered. These examples illustrate the importance of integrating depth of  
coverage and BAF information to fully characterize copy number alterations.

Enhancer hijacking
Juxtaposition of an active 
enhancer element from a 
distant locus into the proximity 
of another gene, usually caused 
by a genomic rearrangement, 
leading to gene activation.
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